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Abstract Methyl ethyl ketone (MEK) is a relatively abundant but understudied oxygenated volatile
organic compound that can serve as a source of both HOx and PAN when photooxidized. We use aircraft
observations of MEK from the remote marine troposphere to show that the ocean serves as a source of
MEK to the atmosphere during both meteorological winter and summer. There is pronounced seasonality in
the MEK profiles in the extratropical troposphere, with higher MEK mixing ratios observed in summer
than in winter. MEK in clean air over the remote oceans correlates with both acetone and acetaldehyde,
whose primary sources in the ocean water are the photooxidation of organic material. We show that even a
small (>1 nM) concentration of MEK in surface waters is sufficient to allow the ocean to be a net source of
MEK to the atmosphere over ocean basins across multiple seasons.

Plain language summary Methyl ethyl ketone (MEK) is an abundant but understudied gas in
Earth' atmosphere, which is emitted into the atmosphere from both human and natural sources. When
MEK is broken apart by ultraviolet sunlight, the products released by those reactions play important roles in
the formation and destruction of air pollution. In this paper, we show that the oceans are a source of MEK to
the atmosphere. The oceanic emissions we document correlate strongly with some other gases that are
known to be produced in the ocean but not those most closely associated with the growth of microscopic
oceanic phytoplankton. Finding this new source helps us better understand the importance of MEK to the
atmosphere and provides guidance for future oceanic and atmospheric research.

1. Introduction

Ketones are important to atmospheric oxidation because they are ubiquitous oxygenated volatile organic
compounds (OVOCs) that have a sufficiently long atmospheric lifetime to be transported to the upper tropo-
sphere. There, photolysis of acetone (and other carbonyls such as CH,0) can serve as an additional source of
hydroxyl radicals (HOx = OH + HO,) in a region where water vapor is scarce (McKeen et al., 1997; Neumaier
et al., 2014; Singh et al., 1995; Wennberg et al., 1998). The significance of methyl ethyl ketone (MEK, 2-
butanone), the second most abundant atmospheric ketone, remains uncertain (Singh et al., 2004; Yariez-
Serrano et al., 2016). Similar to acetone, MEK photolysis in the near-ultraviolet can produce HO, radicals
and PAN precursors (Brewer et al., 2019; Martinez et al., 1992; Romero et al., 2005). The number of HOy pro-
duced by photolysis of each MEK in the upper troposphere should be comparable to or higher than that from
each acetone molecule in this region. The exact yield of HOx will depend on the concentration of NO and the
quantum yields in the photolysis of MEK at UT pressures and temperatures. The sources of MEK are not
fully understood (Yafiez-Serrano et al., 2016). Known sources of MEK include direct emissions from biomass
burning and the terrestrial biosphere, as well as secondary production from the oxidation of anthropogenic
alkanes (Cappellin et al., 2016; Jordan et al., 2009; Yafiez-Serrano et al., 2016). Better quantification of the
sources of MEK is needed to constrain the abundances, seasonality, and transport of MEK throughout the
atmosphere (Chen et al., 2019).
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Many volatile organic compounds (VOCs) are emitted from the ocean surface from a variety of biogenic and
abiogenic sources. Dimethyl sulfide (DMS), a crucial contributor to the global sulfur cycle and particle for-
mation, is produced by phytoplankton in seawater (Challenger, 1952; Lovelock et al., 1972). The production
of DMS is so tightly coupled to oceanic productivity that seabirds use it as a cue to find prey in the open ocean
(Nevitt et al., 1995). Other VOCs have primarily photochemical sources in the ocean: Acetaldehyde in the
surface ocean has been shown to originate from the photolysis of chromophoric dissolved organic matter
(CDOM; Kieber et al., 1990; Millet et al., 2010; Wang et al., 2019). VOCs such as methyl nitrate
(CH30NO,) have potentially more complicated oceanic sources. While the primary oceanic production of
methyl nitrate is likely to be the photolysis of CDOM (Fisher et al., 2018; Moore & Blough, 2002), the distri-
bution of methyl nitrate in the water column suggests the possibility of additional biological sources (Moore
& Blough, 2002). Acetone has been shown to have a large oceanic emission (Fischer et al., 2012; Yang et al.,
2014, 2016). Acetone is known to be produced by CDOM photolysis in seawater (Dixon et al., 2013, 2014;
Kieber et al., 1990; Zhou & Mopper, 1997), while biological production has been demonstrated in laboratory
studies and is considered likely to occur in the ocean as well (Dixon et al., 2013, 2014; Nemecek-Marshall
et al., 1995). The two processes are not exclusively independent: In mesocosm experiments on phytoplank-
ton blooms, Sinha et al. (2007) found that the largest fluxes of acetone occurred during the bloom decline
phase, marked by relatively high phytoplankton abundance, with less acetone during the low-biomass
post-bloom phase. Based on these findings, it is likely that MEK could also have varied oceanic sources.

2. Methods
2.1. Observations of MEK

We use observational data from the first two deployments of the NASA Atmospheric Tomography (ATom)
mission. The ATom project is a global survey of atmospheric chemistry, which offers a representative inves-
tigation of the composition of the remote atmosphere without the risk of bias incurred in aircraft campaigns
designed to investigate specific phenomena (e.g., smoke plumes, continental pollution outflow, and tropo-
spheric process studies). ATom flights consisted of a series of ascending and descending profiles along the
flight track to create a tomography of the atmosphere. The ATom-1 and ATom-2 missions took place from
29 July to 23 August 2016, and 26 January to 21 February 2017, respectively.

MEK, acetaldehyde, and acetone concentrations are available for every 2 min during ATom using the Trace
Organic Gas Analyzer (TOGA) (Apel et al., 2015; Wang et al., 2019). Sampling for the abundances of methyl
nitrate and DMS from the Whole Air Sampler (WAS) (Barletta et al., 2011; Colman et al., 2001) was manu-
ally controlled and unevenly spaced in time, but it averaged one measurement every ~3 min. WAS samples
were shipped back to the laboratory at UC Irvine and analyzed with gas chromatography (Colman et al.,
2001). The lower limits of detection for MEK, acetaldehyde, and acetone are 1, 5, and 5 ppt, while those
for DMS and methyl nitrate are 0.1 and 0.01 ppt, respectively. Earlier versions of TOGA had difficulty mea-
suring some carbonyls in clean-air conditions (including acetone and acetaldehyde; Apel, 2003); however,
neither the original studies nor more recent updates have suggested that there are any issues in measuring
MEK. Changes to TOGA have lowered detection limits and increased the capability of the instrument in
measuring carbonyl mixing ratios in clean conditions (Apel et al., 2015; Wang et al., 2019). Further discus-
sion of the tests performed regarding these measurement artifacts in preparation for the ATom campaigns
can be found in the supplementary material to this work (for MEK and acetone) and in the supplement to
Wang et al. (2019). Data from both WAS and TOGA registering below the lower limit of detection (LLOD)
were dynamically assigned a value between O and the LLOD as a linear function of how many
LLOD-flagged values were recorded on a given flight: the more LLOD-flagged non-NA observations, the clo-
ser the assigned value was to 0. This methodology did not change any of the conclusions relative to filling
LLOD data with half the LLOD, another common strategy. Because TOGA and WAS measurements were
taken at different timesteps, we group the data from both instruments into 1-km vertical bins on ascent
and descent of each flight. Carbon monoxide (CO), also used in this analysis, was measured using a
Quantum Cascade Laser Spectrometer (Accuracy 3.5 ppb, 0.15 ppb precision at 1 s) (Santoni et al., 2014)
and was essentially continuous with a 1-s resolution.

MEK has an estimated atmospheric lifetime against OH oxidation of ~5-6 days at a 24-hr mean OH concen-
tration of ~1.5 x 10° cm™ (Jordan et al., 2009; Yafiez-Serrano et al., 2016); its most important alkane
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precursors (n-butane and i-pentane) have mean atmospheric lifetimes against OH oxidation of up to 2-4 days
under the same OH concentrations, with longer lifetimes on the order of weeks possible during wintertime
(Hodnebrog et al., 2018; Lee et al., 2006; Rossabi & Helmig, 2018). These lifetimes are long enough that both
MEK and its precursors can be transported into the remote marine atmosphere from terrestrial sources. To
isolate clean air masses, we define a series of conservative estimates of CO background mixing ratios by
region and season. In the Southern Ocean (SO), we define the background CO mixing ratio as 50 ppb in
January and February and 60 ppb in July and August; in the South Atlantic (SA) and South Pacific (SP)
we define the background CO mixing ratios as 55 ppb in January and February and 65 ppb in July and
August; in the Western Tropical Pacific (WTP) the values are defined as 85 ppb during January and
February and 70 ppb during July and August. These values were chosen considering the
GLOBALVIEW-CO observations from the same year (GLOBALVIEW-CO, 2009) and do not reflect a specific
CO percentile in the ATom data set; this choice was made because different regions and seasons sampled by
ATom can have more or less data “above background,” reflecting the number of polluted air masses
sampled. We have examined the sensitivity of our results to the choice of background: Increasing back-
ground CO by 5 ppb makes little difference to our results, while reducing background values by 5 ppb
reduces the number of clean observations and renders statistical analysis difficult in some regions and sea-
sons, especially in the SA. This sensitivity is included in the text where relevant. We use these background
values to eliminate recent influence from sources of MEK on land and thus isolate “clean” air masses in
which CO is produced primarily from the oxidation of long-term reservoirs of natural and anthropogenic
reservoir species. In the ATom 1 and 2 data sets in the regions of interest (including data above CO back-
ground), MEK is weakly correlated with CO (r=0.245, p = 2.5 x 10~*°) because the two species share several
sources (biomass burning and alkane oxidation). In the context of these correlations, p is the probability that
the null hypothesis of no relationship between the variables is correct. At CO mixing ratios at or below back-
ground, however, MEK and CO are not correlated in these regions (r = 0.07, p = 0.07).

We have grouped the ATom observations over the remote oceans by the regions shown in Figure 1. This fig-
ure also shows the clean-marine (colored) and anthropogenically influenced (gray) data points, as well as the
vertical distribution of the sampling (color scale). Because we are attempting to identify clean air masses, we
have restricted this study to four relatively remote and clean regions sampled by ATom: the WTP, the SP, the
SA, and the SO. There are additional ATom data in the Eastern Tropical Pacific and Tropical Atlantic, but
they are largely land influenced, and we omit them from this analysis. Stratospheric influences in the data
set were minimal and were excluded by using only points below 10 km. We also tested our results by includ-
ing only measurements where ozone <90 ppb to remove stratospheric influence; the results were unchanged.

2.2. Flux Calculations

We use a simplified two-layer model developed by Liss and Slater (1974) to calculate the air-sea exchange of
MEK. This model, used in many air-sea flux schemes (Fischer et al., 2012; Johnson, 2010; Wang et al., 2019),
parameterizes the flux of a gas into or out of the ocean based on windspeeds and concentration gradients. We
supplement the original two-layer model with updated air (Johnson, 2010) and water (Nightingale et al.,
2000) transfer velocities. The necessary variables for this parameterization were from in situ ATom observa-
tions taken at less than 200 m above sea level (temperature, pressure, atmospheric MEK mixing ratios, and
windspeed), non-ATom observations (oceanic MEK mixing ratios, discussed below), and satellite observa-
tions (sea surface temperature [SST] and salinity). SSTs for the ATom-1 and ATom-2 time periods are from
the Moderate Resolution Imaging Spectroradiometer-Aqua L3 11 micron SST product (Ocean Biology
Processing Group, 2015; Werdell et al., 2013); salinity is from the Aquarius rain-corrected monthly sea sur-
face salinity product for the relevant months in 2014 (the last year available from Aquarius) (JPL, 2015). We
also re-ran the model using a regional mean surface windspeed from the Modern-Era Retrospective analysis
for Research and Applications version 2 reanalysis (Gelaro et al., 2017) over the same time period, with simi-
lar results. All calculation inputs are included in the supporting information (Table S1).

3. Results

3.1. Multibasin Evidence for an Oceanic MEK Source

Figure 2 presents vertical profiles of MEK over the remote ocean regions sampled by the ATom missions.
The data are presented in 1-km altitude bins and further classified by meteorological season. We define
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Figure 1. ATom-1 (July and august) and ATom-2 (January and February) sampling locations. Gray data points are
classified as anthropogenically influenced and not included in our analysis. The colored points are at or below CO
background as defined in the text and are classified as clean air masses (see text). The color scale shows the aircraft
altitude. Data have been grouped into four coherent regions: Western tropical Pacific, South Pacific, Southern Ocean, and
South Atlantic. Data not included in this figure had no values recorded due to instrument downtime for either the MEK
mixing ratios or CO mixing ratios and has not been included in any of our analysis.

meteorological winter as December-February in the Northern Hemisphere and June-August in the
Southern Hemisphere, while meteorological summer is the reverse. In the equatorial regions, this
classification becomes less meaningful, but little seasonality was observed in the vertical profiles in those
regions. We denote the 25th, 50th, and 75th percentile for each 1-km altitude bin and season. Solid colors
denote the profile with a CO filter applied; in dashed lines we show the same statistics calculated using all
of the data. In taking this approach, we assume that there is some atmospheric background profile,
through which more polluted coherent air masses advect. By filtering out the polluted air signal and
averaging across the region, we hope to visualize a profile that reflects only the regional emissions.

The vertical distribution of MEK over the remote oceans is consistent with a source at the surface and a sink
aloft. The consistent profile shape is present during both summer and winter in all regions including the SO.
Except in the tropics, the summer surface enhancement is generally larger than the winter surface enhance-
ment. The SP and SO summer surface enhancements are larger than their winter counterparts. The highest
median MEK surface mixing ratios were encountered in the SP, while the highest extremes in the unfiltered
data were measured in the WTP; in the filtered data, both maxima were in the SP. The similarity in shapes
between the CO-filtered and full-data vertical profiles in the middle and lower troposphere strengthens the
evidence for an oceanic source; it also means that our analysis is not sensitive to the choice of background
CO mixing ratio(s). The only major feature removed by filtering for CO occurs in the mid to lower tropo-
sphere during the SA winter is the MEK spike at 2 km in the full-data profile. Examination of other fire tracer
mixing ratios observed with TOGA (HCN, CH;CN) suggests that the source of this MEK enhancement was
biomass burning. Additional examination of the n-butane and i-pentane abundances measured by TOGA
shows that mixing ratios of these species are either negligible or very low and have the opposite

BREWER ET AL.

40f 10



Ay

N\\JI Geophysical Research Letters 10.1029/2019GL086045
12.51
i a) South .. b) South
1004 —— _ “=— - — - Atlantic Pacific
754
5.0
— 254 A== _
S
S5
< 00
T 1254
£ c) Southern d) Western
< 10.0 Ocean Tropical
Pacific
7.57 — Summer CO Filtered
— Winter CO Filtered
5.0 -- Summer All Data
-- Winter All Data
2.5-
0.0 -
0 10 20 30 40 0 10 20 30 40

MEK (ppt)

Figure 2. MEK observations from ATom-1 and ATom-2 in the a) South Atlantic, b) South Pacific, ¢) Southern Ocean, and
d) Western tropical Pacific in 1-km altitude bins. Vertical lines connect the median value for each binned vertical km, and
horizontal bars show the spread of the 25th and 75th percentiles. Blue lines summarize data from the meteorological
winter (January and February in the northern hemisphere, July and august in the southern hemisphere) and orange lines
summarize data from meteorological summer. The solid lines show the data from the CO-filtered air masses, where CO
mixing ratios are at or below the regional background (as described text). Dashed lines present the same analysis using all
available MEK data.

seasonality of that observed in MEK (i.e., concentrations are larger in the winter than the summer). The
observed alkanes cannot explain the observed MEK signal unless we assume that all or almost all of the
alkanes previously present in the air mass have already been oxidized away (Figure S1), and both our CO
filter and the short residence times of the air mass within the marine boundary rule out this possibility.
Further discussion of these observations is included in the Supplemental Material (Text S3). Sample sizes
for each vertical level, region, and season are included in the supplemental material (Figure S2).

3.2. Possible Sources of Oceanic MEK

We suggest that there are at least two potential oceanic sources of MEK: (1) phytoplankton in the remote
oceans and (2) another chemical or photochemical process in the surface ocean. If MEK were produced
mostly by phytoplankton, we would expect to observe a correlation between the abundance of MEK and tra-
cers for oceanic production. We calculated correlations between MEK and four OVOCs with documented
ocean sources: methyl nitrate, acetone, acetaldehyde, and DMS. The atmospheric lifetimes of these species
to chemical loss (primarily oxidation by OH and photodissociation) vary. The global mean lifetimes of
methyl nitrate, acetone, and acetaldehyde, respectively, are 26 days (Fisher et al., 2018), 19 days (Brewer
et al., 2017), and 20 hr (Millet et al., 2010); the mean atmospheric lifetime of DMS is 1-2 days (Kloster et al.,
2006; Marandino, 2005). These lifetimes bracket the lifetime of MEK of 5-6 days to chemical loss at an OH
concentration ~1.5 x 10° cm ™ (Jordan et al., 2009; Yafiez-Serrano et al., 2016). Figure 3 presents the correla-
tion between the MEK and these species in CO-filtered air below 1 km in each of the regions in Figure 1.
Because the TOGA and WAS sampling periods are different, each sample here represents a single
profile-averaged value from both TOGA (for acetone, MEK, and acetaldehyde), WAS (for DMS and methyl
nitrate), and Quantum Cascade Laser Spectrometer (for CO) under 1 km. Once filtered by the background
CO mixing ratio, sample sizes are limited to 20 and 37 in the WTP and SO and to 25 and 14 in the SA and
SP, respectively. To ensure the maximum reliability in the statistics, this analysis does not discriminate
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Figure 3. Summary of Pearson correlation coefficients calculated based on the relationships between individual
near-surface (<1 km) profile-averaged ATom observations of MEK and various species in CO-filtered air by region.
Tiles are colored by the sign of the Pearson correlation coefficient in that region. Gray tiles indicate that the sample

size is too small for correlation to be meaningful (n < 10). Total sample n is shown on the y axis for each region. The p value
is shown on each tile, along with stars showing the relative p-value magnitudes in each region: One star corresponds to a
p value between 1 X 10 2and 1 x 102, two stars 1 x 107> and 1 x 10~ %, and three stars p<1x 1074 Acetaldehyde
has been separated into winter and summer correlations because the distributions differ between seasons in all regions,
which is not true for the other three species shown; as such, the n values given for each region refer to the total sample size
of winter and summer combined.

between seasons—all CO-filtered data are combined in this analysis regardless of season. The one
exception is the acetaldehyde-MEK correlation, which shows dramatic differences between seasons.
Scatterplots showing the complete data set summarized in Figure 3 are included in the supporting
information (Figures S3-S6).

Figure 3 shows that MEK and acetone are well correlated across ocean basins, while the other species show
more heterogeneity in the relationships to MEK in this data set. Correlation coefficients between acetone
and MEK range from 0.72 to 0.95, three of which have p values < 1.5 X 107°. This robust correlation in
CO-filtered air across ocean regions suggests that acetone and MEK share an oceanic source. This source
is sufficiently large that observed mixing ratios of MEK are around 10% of that of acetone in the remote mar-
ine boundary layer. Given the disparity in lifetime between these two compounds, the flux of MEK out of the
surface layer must be greater than 10% of that of acetone. Acetaldehyde and MEK are also positively corre-
lated but less strongly than acetone and MEK. Unlike the MEK-acetone case, the correlations between MEK
and acetaldehyde differ seasonally. For this reason, we present the seasonal correlations for acetaldehyde in
each region and season in which sample sizes were sufficiently large. A possible explanation for this correla-
tion is that the photooxidation of MEK can produce acetaldehyde (Calvert et al., 2011), and so we might
expect the two species to appear correlated even without a common source. To examine this possibility,
we used a back trajectory analysis (Bowman, 1993; Bowman et al., 2013; Bowman & Carrie, 2002) to estimate
the mean time that a sampled air mass had been in contact with the oceanic boundary layer. The specifics of
this procedure (Text S2), and the results of the modeling (Figures S7 and S8), are included in the supporting
information. In all locations and seasons studied, the median air mass sampled had been in the boundary
layer for less than 5 days. Given the relatively long atmospheric lifetime of MEK, the correlations observed
are still likely to represent a common source rather than the atmospheric production of acetaldehyde from
MEK. In the WTP and SP during summer, a small number of air masses sampled were within the boundary
layer for between 12 and 15 days. Therefore, it is possible that the particularly strong correlation shown
between MEK and acetaldehyde in the WTP summer might be the result MEK photooxidation; in light of
the similar correlations shown in other regions, we still believe that the weight of evidence rests on the side
of a common oceanic source for the two species. Methyl nitrate shows a strong negative correlation with
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MEK in the WTP. This may simply be an artifact of the greater variability of methyl nitrate in these regions
(mixing ratios range from 4 to 88 ppt for methyl nitrate and 5 to 39 ppt for MEK), but the robustness of the
negative correlation observed does suggest the possibility of some real and unexplained inverse relationship
between MEK and methyl nitrate emissions. In our analysis, DMS is mostly uncorrelated with MEK, with
the sole exception being a weak positive correlation observed in the SP (r = 0.47, p = 0.02). This correlation
may simply reflect the summertime increases in both MEK and DMS in the region (see Figure S4 in the sup-
porting information) and the near-zero DMS values observed during winter. Because the rate coefficient for
the reaction with OH is ~10x lower for MEK than DMS (Burkholder et al., 2015) and our back-trajectory
modeling shows that most air masses sampled had been in contact with the oceanic boundary layer for more
than a day (the mean lifetime of DMS; see Figure S7 in the supporting information), we cannot rule out the
possibility that MEK and DMS were coemitted in these regions and over time the coemitted DMS reacted
away and was not observed by our study. However, given that acetaldehyde did show a correlation with
MEK despite having a similar atmospheric lifetime to DMS, we believe that the emissions of DMS and
MEK are unlikely to be correlated. Given the observed connections between the decline of phytoplankton
blooms and acetone emissions (Sinha et al., 2007), it is possible that a time-lagged correlation between
MEK and DMS might exist; however, the temporal resolution of our data does not allow the analysis neces-
sary to observe such a connection. These results are insensitive to the choice of background CO. Based on
this analysis, our observed correlations between MEK and acetone, as well as those between MEK and acet-
aldehyde, are robust and consistent with the three species sharing similar oceanic sources.

We are only aware of two papers detailing observations of MEK in seawater. Swan et al. (2016) sampled
Australian coral reefs and observed concentrations of MEK in seawater ranging from 102 to 119 nM.
Swan et al. (2016) also documented similar seawater acetone concentrations (74-183 nM), which are an
order of magnitude higher than the range of previously estimated open-ocean mixed-layer acetone concen-
trations (Brewer et al., 2017; Fischer et al., 2012) and roughly two to four times as high as the highest pre-
vious measurements in the open ocean (Tanimoto et al., 2014). Since acetone concentrations are observed
to be lower in the pelagic environment than in coral reef seawater, we assume that open-ocean MEK concen-
trations are also much lower than those observed by Swan et al. (2016). Therefore, we treat their observation
as an upper limit for our model calculations. Schlundt et al. (2017) report median MEK concentrations of
~0.88 nM in the Sulu and South China seas. These concentrations are smaller than the lower end of acetone
values in the open ocean by a factor of ~3 (Brewer et al., 2017).

The air-sea exchange of MEK can also be represented using a flux model (section 2.2). When we estimate the
flux of MEK using realistic ocean conditions with seawater MEK concentrations similar to those observed by
Schlundt et al. (2017), the model produces a small net positive flux of MEK in all seasons and regions exam-
ined. For all regions and both seasons, the ocean does not take up MEK until the seawater concentration of
MEK falls below ~0.3 nM. These model results are presented in greater detail in the Supplemental
Material (Figure S8).

While seawater MEK concentrations are as of now mostly unknown, existing measurements suggest that
MEK shares a similar oceanic abundance to acetone. The lowest acetone observed in the surface ocean
ranges from 2 to 5 nM, as summarized by Brewer et al. (2017). Our calculations suggest that ocean regions
shown in Figure 1 likely serve as a net source of MEK to the atmosphere. For comparison purposes, a 3-nM
average seawater MEK concentration in the SO implies a ~0.5-Tg annual source from that region. Using
0.88 nM (Schlundt et al., 2017) instead gives a ~0.06-Tg annual source over the SO.

4. Conclusions

Using data from CO-filtered air masses sampled in the ATom-1 and ATom-2 field campaigns, we provide
evidence that the ocean is a source of MEK to the atmosphere. Outside the tropics, this source is more pro-
nounced during summer than winter; less seasonality is observed in the tropics. MEK in the regions we
examined is sometimes weakly correlated with DMS—a reliable tracer of marine biological activity.
Ocean-produced MEK is strongly correlated with acetone and slightly less strongly correlated with acetalde-
hyde, which suggests the three species could share similar sources. Acetone and MEK have similar abun-
dances in the only existing measurements of both species in seawater, providing additional evidence of a
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similar source, and even a small concentration of MEK in surface seawaters results in a flux of MEK out of
the surface waters.

ATom observations suggest that MEK' flux out of the ocean is >10% of that of acetone. As MEK oxidation is a
source of acetaldehyde in the troposphere, this oceanic MEK might serve as a source of acetaldehyde in
regions where current sources fail to explain observations (Wang et al., 2019; Wolfe et al., 2019).
Quantification of the sources and sinks of MEK in the oceans is needed to improve our understanding of
MEK and its implications for global oxidation capacity.

5. Data Availability Statement

ATom observational data used in this study including flight tracks, trace gas observations, and Lagrangian
model output are publicly accessible via ESPO data archive at https://espo.nasa.gov/atom/archive/
browse/atom/id3/DCS8.
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