
1.  Introduction
Methanol is the most abundant nonmethane organic gas in the troposphere, where it influences the budgets 
of ozone and OH and is a precursor of formaldehyde and CO (Duncan et al., 2007; Tie et al., 2003; Wells 

Abstract  Methanol is the second-most abundant organic gas in the remote atmosphere after 
methane, but its sources are poorly understood. Here, we report a global budget of methanol constrained 
by observations from the ATom aircraft campaign as implemented in the GEOS-Chem global atmospheric 
chemistry model. ATom observations under background marine conditions can be fit in the model 
with a surface ocean methanol concentration of 61 nM and a methanol yield of 13% from the newly 
implemented CH3O2 + OH reaction. While terrestrial biogenic emissions dominate the global atmospheric 
methanol budget, secondary production from CH3O2 + OH and CH3O2 + CH3O2 accounts for 29% of the 
total methanol source, and makes up the majority of methanol in the background marine atmosphere 
sampled by ATom. Net emission from the ocean is comparatively minor, particularly because of rapid 
deposition from the marine boundary layer. Aged anthropogenic and pyrogenic plumes sampled in ATom 
featured large methanol enhancements to constrain the corresponding sources. Methanol enhancements 
in pyrogenic plumes did not decay with age, implying in-plume secondary production. The atmospheric 
lifetime of methanol is only 5.3 days, reflecting losses of comparable magnitude from photooxidation 
and deposition. GEOS-Chem model results indicate that methanol photochemistry contributes 5%, 4%, 
and 1.5% of the tropospheric burdens of formaldehyde, CO, and ozone, respectively, with particularly 
pronounced effects in the tropical upper troposphere. The CH3O2 + OH reaction has substantial impacts 
on radical budgets throughout the troposphere and should be included in global atmospheric chemistry 
models.

Plain Language Summary  Methanol is the most abundant nonmethane organic gas in the 
lower atmosphere, but the magnitudes of its sources and sinks remain uncertain. Here, we evaluate a 
global atmospheric chemistry model against recent observations of methanol in the remote atmosphere 
to better constrain the methanol budget. We show that, relative to past studies, the new data suggest 
a smaller atmospheric methanol source from the ocean and a larger source from gas-phase chemistry. 
Methanol emitted from the oceans plays a particularly small role in the atmosphere because it is quickly 
deposited back to the ocean surface. We incorporate these updates into the global model and evaluate 
their importance for atmospheric chemistry more broadly, showing that methanol directly and indirectly 
influences the abundances of many other tropospheric trace gases.
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et al., 2014). The dominant source of methanol to the atmosphere is its primary emission from terrestri-
al plants, particularly during growth and decay stages (Ashworth et al., 2016; Galbally & Kirstine, 2002; 
MacDonald & Fall 1993; Warneke et al., 1999; Wohlfahrt et al., 2015). Additional sources include second-
ary production from the reactions of methylperoxy radicals (CH3O2) with CH3O2 and other organic per-
oxy radicals (Madronich & Calvert, 1990; Tyndall et al., 2001), as well as emissions from oceans (Heikes 
et al., 2002; Millet et al., 2008), biomass burning (e.g., Akagi et al., 2013; Hornbrook et al., 2011; Wentworth 
et al., 2018), and anthropogenic sources including solvent use, vehicular exhaust, and industrial processes 
(Legreid et al., 2007; Olivier et al., 1994; Velasco et al., 2009). Its sinks include reaction with OH (Sander 
et al., 2006), surface deposition (Karl et al., 2005, 2004; Mao et al., 2006; Talbot et al., 2005), and uptake by 
the ocean (Yang, Beale et al., 2014; Yang, Blomquist et al., 2014; Yang et al., 2013).

Due to its ubiquity, methanol has been the subject of many modeling studies providing estimates of its 
global budget in the atmosphere (Galbally & Kirstine, 2002; Heikes et al., 2002; Jacob et al., 2005; Khan 
et al., 2014; Millet et al., 2008; Singh et al., 2000; Stavrakou et al., 2011; von Kuhlmann et al., 2003). While 
these assessments tend to agree on the tropospheric burden of methanol (3–5  Tg), they exhibit large 
discrepancies in total sources and sinks (90–490 Tg a−1), with even greater uncertainties for individual 
source terms. Comparisons with airborne observations (e.g., Jacob et al., 2005; Millet et al., 2008; Müller 
et al., 2016; Singh et al., 2000), ground-based measurements (e.g., Bader et al., 2014; Rinsland et al., 2009), 
and satellites (e.g., Dufour et al., 2006; Stavrakou et al., 2011; Wells et al., 2014, 2012) frequently show 
model biases in the seasonal and spatial variations of methanol and/or model underpredictions of ob-
served methanol mixing ratios. Such underestimates are particularly acute in remote oceanic areas and 
exceed the uncertainties from methanol sinks, suggesting the need for additional secondary sources (Ja-
cob et al., 2005; Müller et al., 2016; Stavrakou et al., 2011). Most recently, X. Chen et al. (2019) found that 
the global chemical transport model GEOS-Chem underestimated methanol mixing ratios by 60% in the 
boundary layer and 78% in the free troposphere over North America relative to observations from an en-
semble of aircraft campaigns, accounting for nearly a quarter of the per-carbon simulated volatile organic 
compound (VOC) deficit. These disparities point to the ongoing need to better constrain the sources of 
tropospheric methanol.

An additional recently proposed source of methanol to the troposphere is the reaction of CH3O2 radicals 
with OH (Archibald et al., 2009; Fittschen et al., 2014), which is hypothesized to contribute substantially to 
the CH3O2 budget in the remote atmosphere where low NO leads to long peroxy radical lifetimes:
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The magnitude of this methanol source depends on the overall reaction rate (k1 = k1a + k1b + k1c + k1d) and 
the fractional contribution of R1b to the overall reaction (ϕ1b = k1b/k1). Both numbers have been estimated 
in experimental and theoretical work but remain poorly constrained. Measurements of k1 are in the range 
(0.8–2.8) × 10−10 cm3 molecule−1 s−1 (Assaf et al., 2016; Bossolasco et al., 2014; Yan et al., 2016), while ob-
served and theoretical product yields suggest that R1a is the major pathway (≥80%), with ϕ1b comprising 
6%–9% and R1d making up the remainder (Assaf et al., 2017; Caravan et al., 2018; Müller et al., 2016; Yan 
& Krasnoperov, 2019). Modeling studies suggest that values of k1 and ϕ1b at the upper ends of these rang-
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es could lead to substantial global methanol production (Ferracci et al., 2018; Khan et al., 2014); Müller 
et al. (2016) used the upper-limit uncertainty bound of ϕ1b = 30% to calculate a source strength of 115 Tg a−1, 
comparable to primary terrestrial sources, which would resolve the model underestimate in remote areas. 
The methanol source from the CH3O2 + OH reaction could also be modulated by the effects on reaction 
rates and branching ratios of complexation between CH3O2 and water molecules in the atmosphere, or by 
subsequent production from the trioxide (CH3OOOH) in reaction channel R1d (Butkovskaya et al., 2009; 
Caravan et al., 2018; Khan et al., 2015; Müller et al., 2016; Vaida, 2011). Crucially, the CH3O2 + OH reaction 
also competes with the methanol source from the CH3O2 + CH3O2 reaction; therefore, depending on the 
values of k1 and ϕ1b, including this reaction in global models could either decrease or increase secondary 
methanol production.

Among the other sources of methanol to the atmosphere, oceanic emissions remain highly uncertain. Early 
inventories of atmospheric methanol applied a fixed saturation ratio to the ocean surface (Jacob et al., 2005; 
Singh et al., 2003), effectively implying that the supply of methanol to seawater is controlled by uptake from 
the atmosphere. Later observations of sea-surface methanol indicated the presence of methanol sources 
and sinks within the surface ocean (Heikes et al., 2002; Williams et al., 2004), which has since been con-
firmed with the identification of methanol-producing phytoplankton (Mincer & Aicher, 2016) and metha-
nol-consuming microbes (e.g., Giovannoni et al., 2008). Despite the presumed spatiotemporal heterogeneity 
of these biological controls on oceanic methanol, measured sea-surface concentrations have typically been 
high (100–200 nM) and homogeneous, which models invoked by applying two-way methanol exchange 
with a single fixed seawater concentration set to the average of past in situ measurements (e.g., Millet 
et al., 2008). However, recent studies have observed methanol concentrations an order of magnitude lower 
in the surface ocean (Yang, Beale et al., 2014; Yang, Blomquist et al., 2014; Yang et al., 2013) and with high 
interannual variability (Beale et al., 2015), suggesting the need to reevaluate the oceanic contribution to 
atmospheric methanol.

In this work, we reassess the global budget of methanol by updating the GEOS-Chem model to reflect the 
recent advances described above and compare simulations to measurements made during the NASA At-
mospheric Tomography (ATom) Mission. We correlate model-measurement disparities in the most remote 
regions of the troposphere with simulated tagged methanol tracers to constrain the secondary and oceanic 
sources, and analyze observed enhancements of methanol mixing ratios in pyrogenic and anthropogenic 
plumes to evaluate the strength of those primary emissions. With these new source estimates, we present 
an updated global budget of tropospheric methanol. We further describe the contribution of methanol and 
the newly implemented CH3O2 + OH reaction to the budgets of formaldehyde, CO, ozone, and other trace 
tropospheric species.

2.  Methods
2.1.  GEOS-Chem

We simulate tropospheric methanol with GEOS-Chem, a three-dimensional global chemical transport 
model with detailed state-of-the-science atmospheric chemistry (http://geos-chem.org, last access: May 13, 
2020). GEOS-Chem incorporates assimilated meteorological observations from the NASA Goddard Earth 
Observing System—Fast Processing (GEOS-FP) rdata product of the NASA Global Modeling and Assimi-
lation Office. We use model version 11-02d including both tropospheric and stratospheric chemistry (East-
ham et al., 2014) as well as updated halogen chemistry relevant to oxidant budgets in the remote and oce-
anic troposphere (Q. Chen et al., 2017; Sherwen, Evans et al., 2016; Sherwen, Schmidt et al., 2016). Methane 
mixing ratios are fixed in the model based on observations. In this work, we update the chemical mecha-
nism with improved isoprene chemistry from Wennberg et al. (2018) using the implementation described 
in Bates and Jacob (2019). We also update the standard emissions inventories as described in the following 
section, including the addition of an oceanic alkane and alkene source following Paulot et al. (2011) and 
Millet et al. (2015). For comparisons with flight campaigns we sample the model at the times and locations 
of each observation, while for annual budget calculations we perform simulations from July 1, 2016 to June 
30, 2017. All results described herein follow a model spin-up of at least 6 months and are performed at 
2° × 2.5° horizontal resolution with 72 vertical levels.
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We improve the diagnostic capability of GEOS-Chem by tagging methanol according to its source in order 
to separate the contributions from individual primary emission and secondary production sources. We add 
eight individual species: four representing primary biogenic, anthropogenic, pyrogenic, and oceanic meth-
anol emissions, along with four representing secondary production of methanol from CH3O2  +  CH3O2, 
CH3O2 + other organic peroxy radicals, glycolaldehyde photolysis, and the new CH3O2 + OH reaction. Each 
tagged methanol species has the same loss processes in the model as methanol itself; thus, the sum of the 
tagged tracers equals total methanol.

2.2.  Model Sources and Sinks of Methanol

For biogenic methanol emissions from living plants, we use the Model of Emissions of Gases and Aerosols 
from Nature (MEGAN; Guenther et al., 2012) version 2.1, described in detail by Stavrakou et al.  (2011). 
MEGAN calculates methanol emissions (E, mol m2 s−1) at each grid box and time step using the following 
formula:

     LAIage PTE � (2)

where ϵ represents a base emission factor dependent on plant type, γage is a scaling factor dependent on leaf 
age, γPT includes light- and temperature-dependent scaling, and LAI is the leaf area index. For methanol, 
ϵ is set to 6.94 × 10−9 mol m2 s−1 for shrubs, crops, needle-leaf trees, and northern temperate and boreal 
broadleaf tree, and to 3.47 × 10−9 mol m2 s−1 for grasses and all other broadleaf trees, based on 17 obser-
vational ecosystem studies (see citations in Guenther et al., 2006; Stavrakou et al., 2011). γage is based on 
Harley et al. (2007) and Karl et al. (2003) and is highest for young leaves, which produce large amounts of 
methanol from pectin demethylation during their growth (Fall & Benson, 1996; MacDonald & Fall, 1993). 
Finally, methanol emissions are highly light- and temperature dependent (Harley et al., 2007) and drop near 
zero at night due to stomatal control (Ashworth et al., 2016; Nemecek-Marshall et al., 1995). In MEGAN, 
this is incorporated into the γPT factor, which parameterizes 80% of methanol emissions as light-dependent 
and 20% as light-independent.

Methanol is also released from dead and decaying vegetation in various biotic and abiotic demethylation 
processes (Galbally & Kirstine, 2002; Warneke et al., 1999). We implement this source as in Jacob et al. (2005) 
and Millet et al. (2008), using an emission factor of 160 μg methanol emitted per kg dry plant mass applied 
to a map of heterotrophic respiration derived from the CASA 2 biosphere model (Potter et al., 1993; Rand-
erson et al., 1997), which leads to a global methanol emission of 23 Tg a−1.

When implemented in GEOS-Chem with GEOS-FP meteorology, MEGAN tends to underestimate biogenic 
VOC emissions (Bates & Jacob, 2019; Wells et al., 2014), so we scale MEGAN emissions up by 10% such that 
the primary biogenic source (from both living and dead vegetation) is equal to 100 Tg a−1, as estimated by 
Stavrakou et al. (2011). While this source magnitude has also been corroborated by Millet et al. (2008) and 
Wells et al.  (2014), multiple studies suggest that the spatiotemporal variability of methanol emissions is 
overly simplified by MEGAN. Rinsland et al. (2009) and Wells et al. (2014) both note a need for increased 
emissions from arid landscapes, and Wells et al. (2014) find that the seasonality of MEGAN emissions is 
biased. von Dahl et al. (2006) describe a large source from herbivory-induced plant stress that is currently 
absent from models. Wohlfahrt et al. (2015) review fluxes from land ecosystems and show that methanol 
emissions can differ substantially within plant functional types, for example, by up to a factor of 3 for 
various measurements of grasslands (Fukui & Doskey, 1998; Kirstine et al., 1998; Ruuskanen et al., 2011). 
However, the ATom observations are not suited to discern these details in the biogenic source, so we do 
not address these complexities here. Furthermore, despite the large regional and seasonal uncertainties in 
biogenic methanol emissions, our confidence in the global annual budget terms presented in Section 5 is 
elevated by the convergence of past inversion estimates (Wells et al., 2014).

Pyrogenic methanol emissions in GEOS-Chem are derived from the Global Fire Emissions Database ver-
sion 4 (GFEDv4) (van der Werf et al., 2010). The calculation of gaseous emissions relies on burned area from 
Giglio et al. (2013) enhanced by the contribution of small fires as described in Randerson et al. (2012), with 
temporal scaling from Mu et al. (2011). Emission factors (g methanol emitted per kg dry material burned) 
for each of the six GFED4 burn types are based primarily on Akagi et al. (2011), ranging from 1.18 g kg−1 
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for savannah fires to 8.46 g kg−1 for peat fires. In GEOS-Chem, this gives an annual methanol emission 
of 5.9 Tg a−1 in our base simulation used for initial comparisons and the regression analysis in Section 3. 
This is lower than previous global estimates, which range between 6 and 21 Tg a−1 (Andreae, 2019; Jacob 
et al., 2005; Millet et al., 2008; Wells et al., 2014), but gives an average molar ratio of pyrogenic methanol 
emissions to those of CO of 1.85% (mol mol−1), in line with observed enhancement ratios of 0.9%–3.8% (An-
dreae & Merlet, 2001; de Gouw et al., 2006; Holzinger et al., 2005; Hornbrook et al., 2011; Lewis et al., 2013; 
Li et al., 2014; Simpson et al., 2011; Sinha et al., 2003, 2004; Warneke et al., 2009). As described in Section 
4, we increase pyrogenic methanol emissions by a factor of 2.2 in the updated simulation for the global 
budgets in Section 5.

For anthropogenic methanol emissions, we use the MACCity emission data set (Lamarque et al., 2010) 
which specifically includes organic alcohols as a VOC class. We implement the RCP 8.5 forward-project-
ed anthropogenic emissions to our period of interest and assume that methanol represents 50% of alcohol 
emissions by carbon mass (X. Chen et al., 2019), which gives a global methanol emission of 3.15 Tg a−1, 
or 0.52% of CO emissions (mol mol−1) in our base simulation. This is lower than total anthropogenic 
methanol emissions in most previous global model budgets, which are in the range 3–8 Tg a−1 (Jacob 
et al., 2005; Millet et al., 2008; Safieddine et al., 2017; Wells et al., 2014). As described in Section 4, we 
scale up anthropogenic methanol emissions by a factor of 2 in the updated simulation for the global 
budgets in Section 5.

The oceanic contribution to the atmospheric methanol budget is calculated locally as described by Fischer 
et al. (2012) for acetone in GEOS-Chem. Briefly, the parameterization is based on the two-film model of Liss 
and Slater (1974), by which the net flux (F, mol m−2 s−1) out of the ocean can be calculated as the balance of 
ocean emission (E) and uptake (U) by the following equation:

      1( )W g lF E U K C H C� (3)

where Cg and Cl represent the methanol concentrations in the air and water, respectively, H represents the 
dimensionless gas-over-liquid Henry’s law equilibrium constant for methanol (2.02 × 10−4, converted from 
203 M atm−1 at 298 K, with a temperature dependence d(ln(H))/d (1/T) = 5,600 K, from Sander et al., 2006), 
and KW represents the inverse of the total transfer resistance:

    1 1 1( )W l gK k H k� (4)

where kl and kg are the wind speed-dependent liquid- and gas-phase transfer velocities, calculated using 
the parameterizations from Nightingale et al. (2000) and Johnson (2010), respectively. Highly soluble gases 
such as methanol are limited primarily by air-side transfer, with the kl term contributing only a few percent 
to the overall KW (Yang et al., 2013). The dominant kg term is the less-studied and more uncertain element of 
KW, and studies in the laboratory and field frequently disagree on its parameterization (Johnson, 2010; Yang 
et al., 2013). We calculate the emission and uptake terms separately such that the gross outward methanol 
flux can be applied to the tagged oceanic methanol tracer, while the sink to the ocean can be applied to each 
of the tagged methanol tracers.

Oceanic methanol is presumed to be controlled primarily by in situ biological activity, supported by obser-
vations of rapid production and consumption of methanol by plankton and bacteria. The Prochlorococcus 
genus of phytoplankton alone was estimated to contribute 850–1700 Tg a−1 of methanol to the oceans, 10–40 
times the contribution of deposition from the atmosphere (Mincer & Aicher, 2016). This source is offset by 
microbial uptake rates of up to 150 nM day−1 (Dixon et al., 2011b), giving methanol turnover times of <1 
day. Methanol-consuming microbes have recently been observed and characterized in a wide variety of 
ocean environments (Arrieta et al., 2016; Deng et al., 2018; Dinasquet et al., 2018; Dixon et al., 2011a; Dixon 
& Nightingale, 2012; Dixon et al., 2013; Ramachandran & Walsh, 2015; Sargeant et al., 2016), including 
some obligate methylotrophs (Giovannoni et al., 2008), suggesting a critical role for methanol in the ocean 
microbiome. These various pathways of methanol production and destruction can be highly variable in 
both time and space. Production tends to peak only toward the end of the cell life cycle, and has been pro-
posed to provide pulses of methanol associated with phytoplankton blooms (Mincer & Aicher, 2016). Dixon 
et al. (2013) and Sargeant et al. (2016) observed sharp geographic and seasonal contrasts in bacterial meth-
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anol consumption rates, with different metabolic pathways (used as an energy source vs. for cell growth) 
dominating in different regions.

Despite the presumed spatiotemporal heterogeneity of oceanic methanol sources and sinks, observations 
of sea-surface methanol (summarized in Table 1) exhibit little correlation with biological activity and no 
obvious patterns of spatial and temporal variability. Instead, there is a distinct divergence between early 
observations (pre-2010), which measured mean concentrations of 118–159 nM, and more recent observa-
tions of <70 nM, including many in similar locations and seasons to the high prior observations. Past global 
inventories have typically used a fixed surface seawater concentration of 118 nM, the mean concentration 
observed by Williams et al. (2004), and found that the ocean provides a gross methanol source of 43–85 Tg 
a−1 offset by a gross sink of 48–101 Tg a−1, balancing to a net sink of 5–16 Tg a−1 (Millet et al., 2008; Stavrak-
ou et al., 2011; Wells et al., 2014, 2012). Wells et al. (2014) performed sensitivity simulations in which the 
seawater concentration was varied by ±41%, which caused the net ocean sink to vary from 0 to 15 Tg a−1.

Here, to test the potential impact of a lower oceanic methanol concentration in line with recent meas-
urements, we set a fixed seawater concentration of 31.4 nM (the mean of the three most recent Atlantic 
observations in Table 1) in our base simulation, which provides a gross source term of 13 Tg a−1 balanced 
by a computed gross sink term of 30 Tg a−1, for a net sink of 17 Tg a−1. We adjust the seawater concentration 
for our updated simulation as described in Section 3 and find that a fixed seawater concentration of 61 nM 
provides the best fit to ATom observations, which yields gross source, gross sink, and net sink terms of 24, 
38, and 14 Tg a−1.

Among the sources of secondary methanol in the standard GEOS-Chem mechanism, the CH3O2 + CH3O2 
reaction dominates, producing 45 Tg a−1 of methanol. The reaction proceeds by two competing pathways:

CH O CH O CH OH CH O O
3 2 3 2

5

3 2 2

    
k a� (5a)

 
5

3 22CH O O
k b� (5b)

GEOS-Chem uses an overall rate coefficient k5 = k5a + k5b of 9.5 × 10−14 × e390/T (Sander et al., 2006) and a 
temperature-dependent branching ratio of k5b/k5a = 26.2 × e−1130/T (Tyndall et al., 2001). The methyl peroxy 
radical can also react with other peroxy radicals (represented as RO2) to produce methanol:

CH O RO CH OH R O O
H3 2 2

6

3 2

     
k a� (6a)

   
6

3 2CH O RO O
k b� (6b)
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Concentrationa (nM) Location Period Reference

118.4 ± 48.2 (60–230) Eq. Atl. Oct–Nov 2002 Williams et al. (2004)

158.9 ± 33.1 (78–325) NW. Pac. Jul–Aug 2008 Kameyama et al. (2010)

139 ± 51 (48–361) Atlanticb Oct–Dec 2009 Beale et al. (2013) c

49 ± 15 (16–78) coastal NE. Atl. Feb 2011–Mar 2012 Beale et al. (2015)

29 (15–62) Atlanticb Oct–Nov 2012 Yang et al. (2013)

16.3 ± 5.5 (7–28) N. Atl. Oct–Nov 2013 Yang, Beale et al. (2014)

67 ± 35 (<21–226) Southern Ocean Feb–Apr 2020 Wohl et al. (2020)
aReported values are means ± standard deviations; parentheses denote the complete range of observed values. bFull 
transect between 39°S and 49°N. cAlso reported in Beale et al. (2011) and Read et al. (2012).

Table 1 
Measurements of Methanol in the Surface Ocean
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In GEOS-Chem, the branching ratio to methanol production   6 6 6 6/ ( )a a b ck k k k  ranges from 20% to 50% 
for primary and secondary peroxy radicals, and is set to zero for tertiary and acyl peroxy radicals without 
available hydrogen atoms (Orlando & Tyndall, 2012). The photolysis of glycolaldehyde also produces meth-
anol, with a yield of 10% in GEOS-Chem (Magneron et al., 2005). Together, the contributions of R6a and 
glycolaldehyde photolysis add only 3.2 Tg a−1 of methanol to the global budget in the standard GEOS-Chem 
mechanism.

Here, we update the GEOS-Chem chemical mechanism by adding the reaction of CH3O2 with OH radicals 
(R1), as described in the introduction. In the base simulation, we set the reaction rate (k1) to the median 
observed value of 1.6 × 10−10 cm3 molecule−1 s−1 (Assaf et al., 2016), and set the methanol yield (ϕ1b) to 
7%, the central estimate of both Müller et al. (2016) and Caravan et al. (2018), with the remainder forming 
formaldehyde + 2HO2 by pathway R1a (the alkoxy intermediate shown in R1a is assumed to react promptly 
with O2). Consistent with experimental and theoretical results, we do not include pressure or temperature 
dependence in either k1 or ϕ1b. We then adjust the methanol yield from R1 based on ATom observations, 
as described in Section 3 along with additional sensitivity studies of different rates and product yields. As 
implemented in the base simulations, R1 provides a methanol source of 18 Tg a−1. However, because it 
competes as a sink for CH3O2 radicals, the inclusion of R1 in GEOS-Chem decreases the methanol sources 
from R5 and R6 by 21 Tg a−1 and 0.3 Tg a−1 respectively, thus diminishing the total secondary production of 
methanol in the model, consistent with the results of Caravan et al. (2018). In our updated model, we find 
that a yield ϕ1b of 13% provides the optimal fit to ATom observations (see Section 3), which gives a methanol 
source of 33 Tg a−1.

In addition to ocean uptake described above, methanol loss processes in GEOS-Chem include reaction with 
OH and the chlorine radical as well as dry and wet deposition to land surfaces. The reaction of methanol 
with OH proceeds with a rate coefficient of k = 2.9 × 10−12 × e−345/T, resulting in a globally averaged lifetime 
of methanol against reaction with OH of 9 days. Contradictory studies suggest that the reaction of OH 
with methanol may or may not be accelerated in the presence of water vapor (Chao et al., 2019; Jara-Toro 
et al., 2017); absent any conclusive evidence, we do not include this catalysis in our simulations. Dry deposi-
tion employs the standard GEOS-Chem resistance-in-series parameterization (Y. Wang et al., 1998), updat-
ed to account for reactive uptake by vegetation (Karl et al., 2010), resulting in a lifetime of methanol against 
dry deposition to land surfaces of 27 days, comparable to the 29 days globally averaged lifetime against 
ocean uptake in the updated model. Wet deposition and oxidation by aqueous OH in cloud water, both 
unchanged from previous GEOS-Chem analyses (Jacob et al., 2005; Wells et al., 2014), and the reaction of 
methanol with Cl, newly implemented here with a rate constant of kCl = 5.5 × 10−11 (Atkinson et al., 2006), 
are minor loss pathways, with associated lifetimes of 98, 1,100, and 650 days, respectively. Sensitivity anal-
yses by Wells et al. (2014) suggest that perturbing the methanol sinks within their uncertainty ranges does 
not appreciably alter the global methanol budget or source estimates in GEOS-Chem; we therefore do not 
test changes to methanol loss processes, aside from ocean uptake, in our optimization.

2.3.  Observations from the NASA ATom Campaign

Observations of methanol and other trace gases were conducted as part of the NASA ATom field mission. 
The ATom campaign included four individual deployments: July–August 2016, January–February 2017, 
September–October 2017, and April–May 2018. Each deployment consisted of a month-long series of flights 
starting and ending in Palmdale, California, during which the NASA DC-8 aircraft flew the full north-south 
lengths of the Pacific and Atlantic Oceans, repeatedly ascending and descending between altitudes of 200 m 
and 10–12 km to profile the troposphere.

A comprehensive suite of instruments aboard the DC-8 measured numerous trace gases, aerosol properties, 
and other atmospheric quantities. Previous work comparing these measurements to GEOS-Chem and other 
models have revealed the need for novel or increased oceanic sources of many VOCs, including acetalde-
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hyde (Travis et al., 2020; S. Wang et al., 2019), acetone (S. Wang et al., 2020), methyl ethyl ketone (Brewer 
et al., 2020), and small alkyl nitrates (Fisher et al., 2018). Even with these updated sources, acetaldehyde 
remains underestimated in both GEOS-Chem and CAM-chem throughout the troposphere, suggesting the 
need for an unknown VOC precursor (S. Wang et al., 2019). Such a precursor would also contribute to OH 
reactivity in the marine boundary layer, for which both Thames et al. (2020) and Travis et al. (2020) show a 
persistent negative bias. Despite this, Travis et al. (2020) found that GEOS-Chem successfully simulated trop-
ospheric OH and its sources to within measurement uncertainty, and that simulated NOy was also satisfactory 
aside from a high bias in wintertime HNO3 in the northern hemisphere. Because the source of CH3O2 is gov-
erned primarily by OH and methane (fixed to observations in GEOS-Chem), this provides confidence that re-
mote CH3O2 production is unbiased in the model, and thus that the CH3O2 + OH reaction is well represented.

Methanol and other organic gases discussed here, including hydrogen cyanide (HCN) and acetonitrile 
(CH3CN), were measured with the NCAR Trace Organic Gas Analyzer (TOGA), details of which can be 
found in previous publications (Apel et al., 2010, 2003, 2015; Hornbrook et al., 2011). TOGA combines a 
cryogenic preconcentrator, a gas chromatograph (Restek MXT 624 8-m column, 0.18 mm inner diameter), 
and an Agilent 5973N mass spectrometer to measure mixing ratios of numerous VOCs. TOGA has a total 
sample throughput time of 2 minutes, which enabled 11,517 individual observations of methanol (and other 
VOCs) over the course of the four ATom deployments. The precise inlet configuration and other details of 
the TOGA setup in ATom can be found in S. Wang et al. (2019). Precision and accuracy for the detection 
of methanol by TOGA were estimated at 10 pptv and 30%, respectively. Inorganic gases used in the present 
analysis include CO measured by quantum cascade laser spectrometer (QCLS) and water vapor measured 
with a diode laser hygrometer (Diskin et al., 2002; McManus et al., 2005), both averaged to the same observa-
tion frequency as the TOGA measurements. For periods when the QCLS was calibrating, CO measurements 
with a Picarro Analyzer were used instead, corrected for difference from the QCLS with a low-pass filter.

3.  Constraints on Secondary and Oceanic Methanol Sources
Figures  1 and S1 show measured methanol mixing ratios along the ATom flight tracks. ATom observa-
tions, as with previous campaigns, exhibit a persistent high methanol background of several hundred pptv 
throughout the troposphere. The highest mixing ratios (several ppbv) are encountered over North America 
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Figure 1.  Methanol concentration during the Atmospheric Tomography (ATom) mission. Top panels show measured methanol along the ATom flight tracks; 
point colors correspond to the methanol mixing ratio, while point size corresponds to altitude. Bottom panels show simulated and measured methanol binned 
by 20° latitude intervals for each ATom mission. Measurement medians along with 25–75 percentile ranges are shown in black, while medians from the base 
and updated models are shown in gray and red, respectively, and source contributions from the updated model are shown in colored dashed lines.
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in summer, when biogenic emissions peak (Wells et al., 2012), and in biomass burning plumes frequently 
observed during Atlantic transects. The lowest levels (tens of pptv) are found in the stratosphere and in the 
high latitudes during winter months. There is pronounced seasonal variability at high northern latitudes 
and southern mid-latitudes (high in spring-summer, low in winter), but variability elsewhere is driven pri-
marily by the interception of continental plumes.

Figures 1–3 show comparisons between GEOS-Chem simulations and ATom observations as functions of 
latitude, altitude, and region. For a complete breakdown by season as well, see Figures S2–S4. While the 
model generally captures the features of the methanol altitude profiles and seasonal cycles both globally 
and regionally, the base model (in gray) exhibits a substantial negative bias, underestimating methanol 
globally by over 50% (normalized mean bias). The model bias is largest in the Arctic, where it exceeds 70%, 
and in the northern mid-latitudes, except during winter; it is smallest in equatorial regions and over the 
Southern Ocean. Only over the Southern Ocean in austral winter does the base model overestimate the 
tropospheric methanol column. Averaged across seasons, however, the negative model bias exceeds 30% 
everywhere, suggesting a ubiquitously underestimated methanol source throughout the troposphere.

On a global scale, the negative model bias is strongly correlated with HCN, benzene, and CO (see Figure S5), 
suggesting that pyrogenic, anthropogenic, and potentially biogenic sources are underestimated. However, 
these biases from terrestrial sources might be caused by a number of factors that are difficult to disentangle 
because ATom provided only limited and indirect information on source regions. Here, we seek to isolate 
the observations remote from continental influence in order to focus on the highly uncertain CH3O2 + OH 
and oceanic contributions to the budget, which will enable us to fit the measurement-model difference with 
the following equation:

      3 , 3 , 3 , 3 ,CH OH CH OH CH OH CH OHTOGA i base i OH i ocean i i� (7)

where CH3OHTOGA,i represents the methanol mixing ratio measured by TOGA at point i, CH3OHbase,i rep-
resents the base simulated methanol at that point, and CH3OHOH,i and CH3OHocean,i represent the tagged 
methanol from the CH3O2 + OH and oceanic sources, respectively. We then find the values of the coef-
ficients α and β, constrained to stay above −1 to avoid negative source terms, that minimize the sum of 
the squared errors ϵi; the resulting coefficients represent the scaling factors that need to be applied to the 
CH3O2 + OH and oceanic sources in order to minimize the model underestimate. The CH3O2 + OH and 
oceanic methanol sources exhibit little collinearity (variance inflation factor = 1.08). Key assumptions and 
uncertainties inherent to this approach are discussed at the end of the section.

To isolate remote tropospheric points, we exclude from the present analysis any TOGA observations over 
land, stratospheric points (those with measured water vapor below 15 ppmv), as well as points for which 
benzene, CO, and HCN exceed certain background thresholds. We vary these thresholds to find a combi-
nation that includes the maximum number of observations while minimizing the correlations with CO, 
HCN, and benzene (determined by separately adding terms for each species to the fit in Equation 7, for 
example, δ × COobs,i, and finding the corresponding coefficient δ indistinguishable from or less than zero 
at the 95% confidence level). The resulting threshold values are 3 ppbv for benzene, 200 pptv for HCN, and 
a latitude-dependent CO background rising linearly from 60 ppbv at and below 45°S to 120 ppbv at and 
above 45°N. This results in 1,861 remote TOGA samples to use in the fit in Equation 7; the locations of these 
remote samples are shown in Figure S6. The coefficient estimates described below are insensitive to mod-
erate changes in the precise choice of background threshold; for example, increasing any of the threshold 
mixing ratio values by 20%, replacing the HCN threshold with CH3CN, or replacing the latitude-dependent 
CO threshold with a fixed threshold of 100 ppbv all result in coefficient estimates that are not statistically 
different from those we report here.

After isolating the remote points, we find that the best fit in Equation 7 gives coefficients of α = 0.88 ± 0.06 
and β = 0.94 ± 0.09 (reported error bounds are standard deviation estimates using the bootstrapping meth-
od). Applying these coefficients to the CH3O2 + OH and oceanic methanol sources respectively removes 
the negative model bias for remote points, as shown in Figure  2, and reduces the absolute mean error 
(AME) and root mean squared error (RMSE) by 25% (see Figure S7). Applying these coefficients to the 
full ATom data set reduces the overall model bias from −56% to −31%, with the strongest effects in the 
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equatorial regions and over the Southern Ocean (Figures 3d, 3f, and 3h). 
Averaged across seasons, the model bias is eliminated over the equatorial 
Pacific, the region with the fewest intersected continental plumes and 
the highest relative contribution from secondarily produced methanol. 
However, methanol remains underestimated by the model in parts of the 
troposphere influenced by continental sources, where a greater number 
of measurements were excluded from the remote source analysis due to 
elevated CO, HCN, and benzene. This underestimate is most pronounced 
in the northern mid- and high latitudes (Figures  3a–3c), except dur-
ing winter, suggesting that Northern Hemispheric terrestrial methanol 
sources remain underestimated in the updated model. The contribution 
of model biases in anthropogenic and pyrogenic methanol emissions to 
this underestimate will be addressed in Section 4. While a lack of long-
lived biogenic tracers precludes a quantitative analysis of model bias in 
biogenic methanol emissions with the ATom data, the simulated source 
contribution profiles (Figures S2 and S3) and seasonality of the bias sug-
gest that Northern Hemispheric biogenic emissions may be underesti-
mated with MEGAN in GEOS-Chem, as previously found for the United 
States and Western Europe by Wells et al. (2014).

The values of the coefficients α and β imply a branching ratio of methanol formation from the CH3O2 + OH 
reaction of ϕ1b = 13.2 ± 0.4% and a uniform oceanic surface methanol concentration of 61 ± 3 nM. While a 
13% methanol yield through Reaction R1b is larger than the most recent experimental estimates (Caravan 
et al., 2018), it remains within the uncertainty bounds of measured total methanol formation from Reaction 
R1, including possible contributions from an increased rate or from secondary formation via the trioxide 
(R1d). Indeed, the overall methanol yield from Reaction R1 estimated by Müller et al. (2016), including via 
R1d, totals 11.5%. We test these possibilities with two sensitivity simulations, identical to the base simula-
tion but with (a) a faster k1 rate (2.8 × 10−10 cm3 molecule−1 s−1), causing decreased methanol production 
from CH3O2 + CH3O2 but increased production from CH3O2 + OH, and (b) the addition of channel d to 
Reaction R1, forming the trioxide CH3OOOH, which reacts as in Müller et al.  (2016) to form additional 
methanol, such that the total methanol yield is 13%. Refitting Equation 7 with the output of these simula-
tions results in a worse fit for case (a) (lower R2, higher AME and RMSE) and an indistinguishable fit for 
case (b). Thus, we cannot determine from our simulations whether methanol production from CH3O2 + OH 
is prompt or proceeds through a trioxide intermediate, but we achieve the best fit to methanol observations 
with an overall yield of 13%.

Our inferred ocean concentration of 61 nM is within the bounds of previous measurements, and closer to 
the recent low values observed by Yang et al. (2013), Yang, Blomquist et al. (2014), and Beale et al. (2015). 
While it is nearly 50% lower than the value of 118 nM used in previous global models, which was prescribed 
on the basis of early measurements by Williams et  al.  (2004), the resulting net global flux of methanol 
(14 Tg a−1 from the atmosphere to the ocean), shown in Figure 4, is comparable in magnitude and spatial 
variability to previous budgets (e.g., Figure 3 in Millet et al., 2008). Our oceanic methanol uptake is equiva-
lent to a mean deposition velocity of 0.67 cm s−1 across the ocean surface; while this is higher than past es-
timates inferred from atmospheric methanol profiles and trends (Carpenter et al., 2004; Singh et al., 2003), 
it compares well with more recent estimates from eddy covariance flux measurements, which averaged 
0.68 cm s−1 across the Atlantic Ocean (Yang et al., 2013).

Our constraint on the oceanic contribution to atmospheric methanol is predominantly on the net flux, 
while the absolute seawater methanol concentration we derive from our fitting is highly sensitive to the 
air-sea exchange parameterization scheme. We test this by performing a sensitivity simulation in which we 
replace the methanol uptake term in Equation 3 with the generic dry deposition scheme from GEOS-Chem 
and refit Equation 7 with the resulting output. While deposition to the ocean decreases by a factor of 2, 
we find that the coefficient β drops in tandem to give a comparable net oceanic flux and quality of fit. 
Furthermore, our inferred ocean fluxes across the low-to-mid-latitude Atlantic of 3–10  μmol m−2  day−1 
(Figure 4a) are comparable to the only in situ flux observations available, which measured mean values of 
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Figure 2.  Altitude profiles of measured and simulated remote methanol 
mixing ratios during the Atmospheric Tomography (ATom) mission. 
Measurement medians along with 25–75 percentile ranges are shown in 
black, while medians from the base and updated models are shown in gray 
and red respectively, and source contributions from the updated model are 
shown in colored dashed lines, all binned by 1 km altitude intervals.
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Figure 3.  Regional altitude profiles of measured and simulated methanol mixing ratios during the Atmospheric Tomography (ATom) mission. Measurement 
medians along with 25–75 percentile ranges are shown in black, while medians from the base and updated models are shown in gray and red, respectively. 
Regional boundaries and ATom flight tracks are shown on the map at center (e). Altitude scales are identical between panels, but methanol scales differ.

Figure 4.  Simulated ocean-atmosphere methanol exchange. The left panel shows the annual average net flux of methanol from the ocean to the atmosphere, 
while the right panel shows the annual average gross oceanic methanol emissions, both in the updated simulation. Negative fluxes in the left panel indicate net 
uptake.

(a) (b)
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8.0 and 12.5 μmol m−2 day−1 in the Southern and Northern Hemispheric Atlantic, respectively (Yang, Beale 
et al., 2014; Yang, Blomquist et al., 2014) and 15 μmol m−2 day−1 in the Northwest Atlantic (Yang, Blomquist 
et al., 2014). These sensitivity tests and comparisons provide confidence in our inferred values of net meth-
anol flux, but future work incorporating surface and ocean measurements will be needed to better constrain 
gross fluxes and to quantify their relationship with sea-surface methanol concentrations.

The formulation of Equation  7 prescribes a uniform correction factor for the concentration of meth-
anol in the surface ocean, but the wide range of surface ocean methanol concentrations measured in 
situ suggest that sea-surface methanol is nonuniform. In particular, recent measurements of sea-surface 
methanol by Wohl et al. (2020) show high variability and correlation with biogeochemical parameters in 
the Southern Ocean, suggesting that local-to-regional surface methanol may vary predictably in space 
and time. To test this possibility, we replace the single β coefficient in Equation 7 with a vector 


 which 

applies a different coefficient to oceanic methanol in each ocean basin and season. We test this by split-
ting the ocean source term by ATom mission and by the regions shown in Figure 3 (excluding the Arctic, 
which lacks sufficient remote points) and refitting Equation 7, constraining all coefficients to be greater 
than −1. This gives α = 0.85 ± 0.04 (not significantly different from the fixed-ocean fit) and surface sea-
water methanol concentrations between 0 and 300 nM. While these values fall within measured ranges, 
the overall fit between the model and observations is not substantially improved, and few of the individ-
ual oceanic coefficients are sufficiently constrained to be significantly different from the fixed value. Fur-
thermore, in some seasons and regions with few observations that qualify as remote, the highly uncertain 
local best fit β results in high (∼300 nM) oceanic methanol and a near-surface atmospheric methanol 
gradient inconsistent with observations. For completeness, we show the variable-ocean profiles as dashed 
lines in Figures S2 and S3 and provide the inferred concentrations in Table S1, but we continue to use 
the fixed-ocean simulations for the rest of the present analysis. Further research incorporating surface 
measurements will be needed to diagnose seasonal and regional variability in surface ocean methanol 
concentrations.

Even allowing for a variable ocean concentration, the linear fitting method used here includes a number 
of inherent assumptions: first, that the total simulated methanol will respond linearly to perturbations in 
the sources; second, that the CH3O2 + OH and oceanic terms are parameterized correctly, requiring only 
linear modifications; and third, that the CH3O2 + OH and oceanic terms are the only sources responsible 
for the model bias. We see little reason to assume the first assumption does not hold, as minor modifications 
to the methanol budget should not cause nonlinear behavior such as a strong reduction in OH (see Section 
5.1). We have already described sensitivity studies designed to test the second assumption (e.g., varying the 
k1 rate, implementing a trioxide intermediate in the CH3O2 + OH reaction, and testing ocean deposition 
schemes), from which we conclude that, while plausible, these changes to the source parameterizations 
would not substantially change our inferences about the contributions of these sources to the methanol 
budget.

We test the third assumption—that the CH3O2 + OH and oceanic terms are the only sources that contribute 
to the model bias in the remote troposphere—in two ways. First, we add terms to Equation 7 for each of 
the six other tagged tracers from the simulation and refit the model-measurement difference for remote 
points. Each of the terms result in coefficients indistinguishable from or equal to zero. Second, we perform 
a sensitivity simulation in which we increase the rate of the reaction between OH and methanol by 5%, to 
test whether perturbations to the methanol sink might influence the results. Refitting Equation 7 using the 
results of this simulation, with or without the additional tagged tracers, results in an indistinguishable fit 
with a slightly smaller coefficient α (within uncertainty). Between these tests and eliminating the correla-
tions of the model bias with CO, HCN, and benzene, we believe we have isolated the parts of the atmosphere 
where only the CH3O2 + OH and oceanic sources contribute to the bias; however, we cannot rule out the 
possibility that additional sources not considered here, such as secondary production from another methyl 
peroxy reaction pathway or from additional ocean-derived VOCs, may play a role. This would cause our 
coefficients α and β to be overestimated. However, our updated simulation would still have the correct 
approximate total source strength in the remote troposphere for the purposes of global budget estimates 
(Section 5); the source would just be erroneously attributed to the CH3O2 + OH and oceanic terms instead 
of any unidentified source we exclude.
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4.  Plume-Based Constraints on Terrestrial Sources
Despite its focus on the remote atmosphere, the ATom mission sampled a number of strong terrestrial 
plumes. Our ability to diagnose the model-measurement disparity in these plumes from the regression 
analysis used in Section 3 is limited for at least two reasons. First, global-scale plume transport in Eulerian 
models is hampered by fast numerical diffusion in sheared or divergent flows (Eastham & Jacob, 2017; 
Zhuang et al., 2018). Second, the model bias in terrestrial source strength is likely highly heterogeneous; 
using a fitting procedure as in Equation 7 to constrain terrestrial sources would fail to account for this 
heterogeneity, as it assumes the spatiotemporal pattern of methanol emissions is correct and only requires 
linear scaling.

Instead, we examine the potential for the ATom data set to provide constraints on pyrogenic and anthropo-
genic methanol emissions by isolating individual plumes and comparing their elevated levels of methanol 
to previous measurements and to the emission ratios used in GEOS-Chem. Our metric for comparison is the 
normalized excess mixing ratio (NEMR), calculated as:


  


3 33 [ ] [ ]Δ[ ]1000

Δ[ ] [ ] [ ]
plume background

plume background

CH OH CH OHCH OHNEMR
CO CO CO� (8)

We identify plumes as in Hornbrook et al. (2011), isolating periods of sharply delineated increases in CO 
and methanol, and selecting the closest available unelevated samples at a similar altitude as a background. 
Details for individual plumes are reported in Tables S2 and S3. We categorize plumes as pyrogenic if they 
are accompanied by elevated HCN and CH3CN ( :3NEMRCH CN CO 1.5), and anthropogenic if not. Unfortu-
nately, a lack of exclusively biogenic tracers in continental plumes observed during ATom precludes quanti-
fication of biogenic methanol emissions. The selected backgrounds may differ from the continental bound-
ary layer backgrounds of methanol and CO, adding large uncertainty to the calculated NEMR (Mauzerall 
et al., 1998). In addition, pyrogenic and anthropogenic sources of methanol and CO are likely to coincide 
with biogenic emissions, which may then be misattributed. To minimize this interference, we isolate only 
the wintertime anthropogenic plumes for further analysis; we do not find a significant seasonal differ-
ence in NEMR for pyrogenic plumes, which are generally more distinct (higher mixing ratio enhancements 
above background) than anthropogenic plumes. We calculate the methanol NEMR individually for each of 
the 20 identified pyrogenic and 6 wintertime anthropogenic plumes, then use as our central estimate the 
mean NEMR across plumes, weighted both by the error-propagated standard deviation in the plume NEMR 
and the number of points per plume.
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Figure 5.  Pyrogenic and anthropogenic plumes in the Atmospheric Tomography mission. (a) Methanol and CO 
enhancements above background in each sampled plume; points are sized by the number of observations, and lines 
represent weighted mean methanol:CO normalized excess mixing ratios (NEMRs) for all pyrogenic plumes and for 
wintertime anthropogenic plumes. (b) Methanol:CO NEMRs and estimated ages (from back-trajectories; see Supporting 
Information) of each sampled plume. Error bars represent the propagated error from the standard deviations of 
methanol and CO observations and estimated plume age in each plume and background sample, and do not include the 
instrumental uncertainty or uncertainty in individual plume age estimates.

(a) (b)
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Figure 5a shows the CO and methanol enhancements of individual plumes 
along with the weighted mean NEMRs for pyrogenic and wintertime 
anthropogenic plumes, for which we find values of 39.8 ± 13 ppt ppb−1 
and 10.4 ± 2.1 ppt ppb−1, respectively. Our observed pyrogenic NEMR is 
higher than most previous measurements (10–31; Hornbrook et al., 2011; 
Lewis et al., 2013; Li et al., 2014, and references therein), but not implau-
sible; Holzinger et al. (2005) measured a methanol:CO NEMR of 38 ppt 
ppb−1 in aged biomass burning plumes over the Eastern Mediterranean. It 
suggests that the GFED-derived methanol:CO emission ratio of 1.85% in 
GEOS-Chem should be increased by a factor of 2.2, which brings the total 
pyrogenic methanol emissions into the range of previous model estimates 
(Section 5); other recent assessments of both GEOS-Chem and GFED 
have similarly suggested that the currently implemented emission ratios 
fall short of observations (Andreae, 2019; Wells et al., 2014). Our observed 
wintertime anthropogenic NEMR falls well within the range of observa-
tions (8.4–22; Borbon et al., 2013; de Gouw et al., 2005; Goldan et al., 1995; 
Holzinger et al., 2001; Karl et al., 2018; Warneke et al., 2007), and suggests 
that the the current methanol:CO emission ratio of 0.52% in GEOS-Chem 
should be increased by a factor of 2, as similarly found by a recent study of 
field campaigns above North America (X. Chen et al., 2019). As with the 
pyrogenic source, this increase brings the total anthropogenic methanol 
emissions in GEOS-Chem into the range of previous model estimates.

In either pyrogenic or anthropogenic plumes, the NEMR may differ from 
the methanol:CO emission ratio due to chemical production and loss of 
methanol and CO in the plume during the interval between emission and 
sampling. Past studies have noted that the methanol NEMR in pyrogenic 
plumes may increase with time, likely due to secondary production (Ak-
agi et al., 2013; Holzinger et al., 2005), although contradictory evidence 
exists for this source (Bruns et al., 2017). We do not observe a statistically 
significant dependence of methanol NEMR on plume age (Figure  5b), 
suggesting that secondary methanol production must occur in plumes 
to balance its faster oxidative loss than CO (by a factor of 4 at 298 K). 
This implies that our derived NEMRs reflect both emitted and secondar-
ily produced methanol, and are not strictly emission ratios, which may 
explain why they tend to be higher than previous NEMRs calculated from 
younger plumes (Andreae & Merlet, 2001; de Gouw et al., 2006; Holzinger 
et al., 2005; Hornbrook et al., 2011; Lewis et al., 2013; Li et al., 2014; Simp-
son et al., 2011; Sinha et al., 2003, 2004; Warneke et al., 2009). However, 
models with low spatial resolution are unlikely to capture methanol pro-
duction in plumes satisfactorily, as they necessarily dilute its precursors 
into large grid boxes; using an elevated emission ratio that accounts for 

secondary production may therefore be appropriate to quantify the overall methanol budget. Furthermore, 
using only fresh (<10 days) plumes for our analysis gives weighted mean pyrogenic and anthropogenic 
NEMRs indistinguishable within uncertainty from the weighted means unfiltered by plume age, which 
supports our use of the NEMR to adjust the GEOS-Chem emission ratios. While our analysis supports the 
possibility that secondary methanol production in pyrogenic plumes outpaces its oxidative loss relative to 
CO, further work (e.g., tracking of plumes over long time scales) is needed to quantify this source.

5.  The Global Methanol Budget
Table 2 shows the global annual budget of tropospheric methanol from our updated simulation, after im-
plementing the changes to methanol source terms described in Sections 3 and 4, along with comparisons 
to global budgets from previous studies. Figure  6 shows the contributions of methanol from individual 
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Previous estimatesa This workb

All sources (Tg a−1) 214 (105–287) 205

  Terrestrial biogenicc 110 (95–230) 101

    Biogenic growth 100 (75–280) 78

    Biogenic decay 20 (13–23) 23

  Anthropogenic 4.5 (1–9.3) 6.3

  Pyrogenic 11 (4.3–13) 13

  Oceanicd 43 (30–85) 24

  Secondary productionc 37 (18–48) 60

    CH3O2 + CH3O2 31 (15–48) 24

    CH3O2 + OHe 18 (8–44) 33

    Other reactionse 3.0 3.0

All sinks (Tg a−1) 214 (105–299) 205

  Reaction with OH 104 (66–218) 114

  Reaction with Clf 1.4 1.7

  Ocean uptaked 61 (10–101) 38

  Wet deposition 11 (2.7–13) 11

  Dry deposition to land 34 (24–70) 41

  In-cloud oxidation <1 (0–10) <1

Lifetime (days) 6.6 (4.7–12) 5.3

Burden (Tg) 3.4 (2.9–5) 3.0
aMedian and range of central estimates from the following previous 
global budget analyses: Singh et al. (2000), Galbally and Kirstine (2002), 
Heikes et al. (2002), von Kuhlmann et al. (2003), Tie et al. (2003), Jacob 
et al. (2005), Millet et al. (2008), Stavrakou et al. (2011), Wells et al. (2014), 
Khan et al. (2014), and Müller et al. (2016). bGlobal GEOS-Chem budget 
from our updated simulation. cSubcategories do not sum to category 
totals because they only include those studies that specify the biogenic 
and secondary pathways. dIncluding only those studies that report gross 
oceanic emissions and uptake, rather than net values. eOnly Müller 
et al.  (2016) and Khan et al.  (2014) included the CH3O2 + OH source, 
and only von Kuhlmann et  al.  (2003) quantified the contributions of 
other secondary pathways (including CH3O2 + RO2 and glycolaldehyde 
photolysis). fOnly Müller et al. (2016) separately accounted for this sink.

Table 2 
Global Budget of Atmospheric Methanol
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sources to the total tropospheric burden; corresponding zonal profiles, maps of emissions, and maps of the 
percent contribution from each source can be found in Figures S8–S11. We find that biogenic terrestrial 
emissions constitute nearly half of the tropospheric source and burden of methanol, while secondary pro-
duction contributes another ∼30%, with the majority of secondary production from the newly implemented 
CH3O2 + OH reaction. We calculate the total sources and sinks of methanol to be 205 Tg a−1, within 5% of 
the median of previous estimates despite our changes to individual source terms. Our atmospheric meth-
anol lifetime of 5.3 days and burden of 3.0 Tg are on the lower ends of the ranges of previous estimates. A 
more detailed listing of methanol budgets from previous studies is provided in Table S4.

The most prominent change to our methanol budget relative to previous work is the increased importance 
of secondary methanol production, predominantly from the inclusion of the CH3O2 + OH reaction, which 
we find provides the second largest contribution to tropospheric methanol behind biogenic emissions. 
Despite the corresponding decreased methanol production from the CH3O2 + CH3O2 reaction, we find a 
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Figure 6.  Methanol burden (top left) and contributions from individual sources. The maps shown annual average 
mixing ratios for the tropospheric column in the updated simulation. The scales for the total and biogenic panels differ 
from the others by a factor of 10. Numbers in the bottom right of each panel provide the annual average tropospheric 
burden of methanol from each source.
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total secondary methanol source of 60 Tg a−1, 60% larger than the median from previous budgets. Müller 
et al. (2016), the only other study to incorporate an appreciable methanol source from the CH3O2 + OH 
reaction, found a similar total secondary methanol production of 59 Tg a−1. Jacob et al. (2005) proposed that 
a secondary methanol source of 50–100 Tg a−1, higher than mechanisms known at the time could provide, 
would alleviate negative model biases over the tropical Western Pacific. Thus, our increased secondary con-
tribution to the methanol budget remains consistent with previous work.

The other notable change to the methanol budget introduced here is the reduced gross oceanic source due to 
our lower seawater methanol concentration and updated parameterization of transfer velocities. While we 
simulate a similar small net flux of methanol to the ocean (14 Tg a−1) to previous studies (median 10 Tg a−1), 
our gross oceanic emission of 24 Tg a−1 is only 60% as large as the median of previous estimates and 30% as 
large as in Millet et al. (2008). This also causes a reduction in the gross uptake of methanol by the ocean, 
because most ocean-derived methanol is rapidly lost again to the sea surface. Because of this rapid oceanic 
uptake, equivalent to a mean deposition velocity of 0.67 cm s−1 across the ocean surface, the ocean-derived 
methanol has a short lifetime, as previously shown in situ by Yang, Blomquist et al. (2014). Ocean-derived 
methanol is therefore a minor contributor to the methanol budget even in the marine boundary layer, where 
the secondary source (including subsiding from above) dominates (see Figure 2). Indeed, we find that the 
atmospheric lifetime of ocean-derived methanol (3.2 days) is much smaller than that of methanol from 
other sources (5.5 days); as a result, although gross ocean emission provides 12% of the total atmospheric 
methanol source in our updated simulation, it only contributes 7% of the tropospheric methanol burden.

5.1.  Implications of Methanol Chemistry

Due to its ubiquity as the troposphere’s most abundant nonmethane VOC, methanol can have important 
implications for the budgets of additional trace gases of interest. Figure  7 shows the changes in tropo-
spheric OH, ozone, formaldehyde, and CO due to methanol photochemistry, computed as the difference 
between simulations without and with the methanol + OH and methanol + Cl reactions (using the updated 
methanol sources). Methanol oxidation contributes 4.0% of the tropospheric CO burden and 4.8% of the 
formaldehyde burden, and increases the surface ozone burden by 1.0%. It also causes a 0.9% reduction in 
tropospheric OH, thus augmenting the lifetime of other trace gases such as methane.

These impacts are not uniformly distributed throughout the atmosphere. For example, the OH reduction 
due to methanol photooxidation is strongest in the boundary layer (1.8%), and reaches up to 4% in areas 
with high biogenic methanol emissions. Conversely, due to its long lifetime against oxidation, methanol 
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Figure 7.  The role of methanol in trace gas budgets. Each panel shows changes in the annual column-average, zonal-
average, and overall (numbers at bottom right) tropospheric burden of a select species due to the inclusion of methanol 
photochemistry in GEOS-Chem, computed by comparing the updated simulation to a sensitivity simulation in which 
methanol photo-oxidation is removed. The scale for ozone shows absolute changes in mixing ratio, while those for the 
other species are shown as percent changes.
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plays its most prominent role in trace gas budgets in the tropical upper troposphere. There, methanol con-
tributes up to 14% of the formaldehyde burden; subsequent radical production from the photolysis of this 
formaldehyde increases OH by 5%. More details on the spatial patterns of these changes are given in Ta-
ble S5, while Figure S12 shows the changes due solely to primary methanol emissions, which are similar in 
pattern to those in Figure 7 but smaller in magnitude.

Finally, the implementation of the CH3O2 + OH reaction in the GEOS-Chem chemical mechanism alters 
tropospheric radical budgets, particularly over the tropical oceans where the CH3O2 lifetime is longest. The 
spatial patterns of these changes are shown in Figure 8. Globally, the CH3O2 + OH reaction represents 14% 
of the fate of CH3O2 radicals, behind only reaction with NO (44%) and HO2 (38%) in our updated simulation. 
The direct consequences of this reaction are decreases in the annual average tropospheric burdens of CH3O2 
and OH by 20% and 1.1%, respectively, reaching local maxima of 45% and 7% in the tropical ocean boundary 
layer. These decreases have secondary effects on the budgets of their other reaction partners, most notably 
HO2 and NO, whose tropospheric burdens increase by 5.5% and 1.1%, respectively (up to 14% and 11% local-
ly). Additional impacts of the CH3O2 + OH reaction, including changes to formaldehyde, CO, ozone, and 
methyl hydroperoxide, are provided in Table S5 and Figure S13.

The CH3O2  +  OH reaction also contributes to OH reactivity, which Thames et  al.  (2020) and Travis 
et al.  (2020) showed was underestimated relative to ATom measurements in simulations using the Mas-
ter Chemical Mechanism v3.3.1 and GEOS-Chem v12.3.0, respectively. Neither mechanism included the 
CH3O2 + OH reaction, which contributes most to OH reactivity in the marine boundary layer, precisely 
where the missing OH reactivity is highest. Our simulations suggest that the CH3O2 + OH reaction directly 
contributes/sim0.1 s−1 of additional OH reactivity in the marine boundary layer, and is therefore insufficient 
to make up the 0.4–0.7 s−1 mean missing reactivity (Thames et al., 2020). However, the contribution of this 
novel reaction pathway could be increased by including other RO2 + OH reactions, and by considering 
secondary effects of CH3O2 + OH on OH reactivity via perturbations in the concentrations of other OH 
reaction partners (e.g., increased methanol, CO, and HO2). Further analysis is required to determine the 
balance of these effects and their influences on OH reactivity.

6.  Conclusions
We have used observations from the ATom aircraft campaign over the Pacific and Atlantic Oceans, simulat-
ed with source-tagged tracers in the GEOS-Chem model, to better understand the factors controlling meth-
anol concentrations in the remote oceanic atmosphere. From there we constructed a new global budget for 
methanol and examined the implications for global atmospheric chemistry.
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Figure 8.  The role of the CH3O2 + OH reaction in radical budgets. Each panel shows changes in the annual column-
average, zonal-average, and overall (number at bottom right) tropospheric burden of a select species due to the 
inclusion of the CH3O2 + OH reaction in GEOS-Chem, computed by comparing the updated simulation to a sensitivity 
simulation in which the reaction in question is removed.



Journal of Geophysical Research: Atmospheres

We find that background methanol concentrations in the remote oceanic atmosphere (200–400 pptv) are 
mostly controlled by chemical production from the CH3O2 + OH and CH3O2 + CH3O2 reactions (global 
sources of 33 and 24 Tg a−1, respectively). The CH3O2 + OH reaction is generally not included in global mod-
els of atmospheric chemistry, but our results indicate that it produces methanol with 13% yield and more 
broadly impacts hydrogen oxide (HOx) radical budgets. Air-sea exchange is optimized with a surface ocean 
methanol concentration of 61 nM, resulting in the ocean representing a weak net sink (14 Tg a−1). Although 
our derived sea-surface methanol concentration and gross unidirectional fluxes of methanol between the 
ocean and atmosphere are sensitive to uncertain coefficients within the model’s air-sea exchange param-
eterization, we find that the net flux is well constrained by our fitting. Contrary to previous atmospheric 
modeling results, but consistent with recent flux measurements over the Atlantic Ocean (Yang, Blomquist 
et al., 2014; Yang et al., 2013), we show that the gross ocean emission of methanol (here 24 Tg a−1) does not 
control methanol concentrations in the marine atmosphere, even in the boundary layer, because of rapid 
deposition and the role of chemical production.

The ATom observations also included a number of anthropogenic and biomass burning plumes containing 
elevated methanol. From correlations with CO, we inferred global anthropogenic and biomass burning 
emissions of 6.3 and 13 Tg a−1, respectively, at the high end of current estimates. The methanol relative en-
hancement in biomass burning plumes did not significantly change over prolonged aging, suggesting that 
chemical production in the plumes compensates for loss from oxidation.

The resulting global budget of methanol constructed from our analysis has a global source of 205 Tg a−1 
including 101 Tg a−1 from the terrestrial biosphere and 60 Tg a−1 from chemical production. Ocean, biomass 
burning, and anthropogenic activities are additional minor sources. The global atmospheric lifetime of 
methanol is 5.3 days, with oxidation and deposition each contributing about half of the sink. The secondary 
source from chemical production accounts for 29% of the global source of methanol but 34% of the global 
burden because it is less sensitive to deposition than the others. Sensitivity simulations with GEOS-Chem 
show that accounting for methanol chemistry increases global tropospheric CO, formaldehyde, and ozone 
by 4.0%, 4.8%, and 1.5%, respectively, and decreases global tropospheric OH by 0.9%. Methanol chemistry 
aside, including the CH3O2 + OH reaction in GEOS-Chem has significant impact on global budgets includ-
ing for OH (−1.1%), CH3O2 (−20%), HO2 (+5.5%), and NO (+1.1%).

Data Availability Statement
Data from the NASA Atmospheric Tomography mission are available at https://doi.org/10.3334/
ORNLDAAC/1581.
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