
1. Introduction
The Arctic stores vast quantities of carbon in soil and permafrost, perennially frozen ground, that is sequestered 
from the active carbon cycle. Approximately twice as much carbon is stored in permafrost globally as is currently 
in the entire atmosphere (Hugelius et al., 2014, 2020). The Arctic is now warming at an accelerated rate and 
recent research has shown that increasing emissions of CH4 and CO2 from ecosystems is causing the Arctic to 
switch from a net sink to a net source of carbon to the atmosphere in some locations (Belshe et al., 2013; Schuur 
et al., 2015; Virkkala et al., 2021; Watts et al., 2021). As permafrost thaws, modern soil and permafrost-derived 
carbon is then decomposed by soil microorganisms and respired as carbon dioxide (CO2) or methane (CH4), 
which are either emitted to the atmosphere directly, or transported through landscapes via ground and surface 
waters to inland waterbodies (Schuur et al., 2008, 2015). Globally, inland aquatic waterbodies receive approxi-
mately 2–3 Pg-C yr −1 from terrestrial landscapes, of which 0.8–2.1 Pg-C yr −1 is thought to be processed and emit-
ted to the atmosphere as CO2 (Cole et al., 2007; Raymond et al., 2013; Tranvik et al., 2009). This makes inland 
aquatic CO2 emissions comparable to those estimated from global land use change (IPCC, 2013). Inland aquatic 
waterbodies can also act as globally significant sources of CH4 to the atmosphere. CH4 has 25-times the global 
warming potential of CO2 over a 100-year time period (Boucher et al., 2009). Methane emissions from inland 
waters are estimated at 0.65 Pg of C yr −1 (CO2-eq), which is 25% of the global estimated land greenhouse gas 
sink (Bastviken et al., 2011). Despite the potentially pivotal role of inland aquatic ecosystems in the global carbon 
budgets, the uncertainty in inland aquatic fluxes is of the same magnitude as the fluxes themselves (Raymond 
et al., 2013; Regnier et al., 2013).

In high-latitudes, the inland water carbon emissions are particularly important because lateral carbon transport 
plays an outsized role in terrestrial carbon cycling (Chapin & Woodwell, 2006; Tranvik et al., 2009). As much 
as twenty-percent of terrestrial net ecosystem productivity is transferred to aquatic environments as dissolved 
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inorganic carbon (Kling et al., 1991; Stackpoole et al., 2017). The distribution of waterbodies in high-latitudes is 
dominated by small waterbodies (<0.001 km 2), which are the highest potential emitters of CO2 and CH4 to the 
atmosphere. These small water bodies are also the most difficult to accurately map, and, therefore, they are often 
not considered in “bottom-up” scaling estimates (Holgerson & Raymond, 2016; Hotchkiss et al., 2015; Muster 
et al., 2019; Thornton et al., 2016). One exception, a recent bottom-up meta-analysis found aquatic emissions 
contribute up to 50% of global methane emissions (Rosentreter et al., 2021). In this study, lakes were the second 
largest contributor behind freshwater wetlands, with approximately 50% of lake emissions coming from the 
smallest waterbodies (<0.001 km 2) and 62% of lake emissions coming from those under 0.01 km 2. It is critical 
to reduce uncertainty in inland aquatic carbon fluxes and predict whether carbon is emitted as CH4 or CO2 to 
understand feedbacks to climate.

Wildfire frequency and severity are also increasing in high latitudes, with both direct (i.e., CH4 and CO2 emis-
sions from combustion) and indirect (e.g., decreases in soil respiration but an increase in permafrost thaw) feed-
backs to climate (Boby et al., 2010; Bond-Lamberty et al., 2007, 2004; Kasischke et al., 2010; Mack et al., 2008). 
Wildfires and permafrost thaw can affect landscape-level carbon dynamics in the Arctic through changing vege-
tation, energy balance, soil respiration, and hydrology (Alexander et al., 2018; Dooley & Treseder, 2011; Helbig 
et al., 2016; Jiang et al., 2017). Landscape-level processes can have consequences for waterbodies through influ-
ence over lateral transport, in turn regulating the quality and quantity of dissolved carbon and the availability of 
limiting nutrients as well as environmental conditions such as water temperature, oxygen content, and pH (Abbott 
et al., 2021; Hutchins et al., 2020; Vonk et al., 2015). Wildfires and permafrost thaw also affect the extent and 
distribution of waterbodies through both the formation of new waterbodies from permafrost subsidence and the 
draining of existing waterbodies from deepening thaw (Brown et al., 2015; Jorgenson et al., 2010; Jorgenson & 
Osterkamp, 2005; Minsley et al., 2016; Walvoord & Kurylyk, 2016).

Aquatic carbon dynamics are regulated at a hierarchy of scales, ranging from regional climate and substrate 
characteristics, to watershed-level vegetation, landscape connectivity, and disturbance, and internal processes 
(Lapierre & del Giorgio, 2012; Toming et al., 2020). The complex mechanisms that influence dissolved CO2 
and CH4 in waterbodies make modeling inland aquatic carbon fluxes difficult, regardless of the type of model 
used. This complexity is a large reason for the uncertainty in inland aquatic carbon emissions, as many estimates 
are based on scaling average fluxes by lake size or simple linear regression models with one or two drivers that 
leave large amounts of variance unexplained. Interpreting the role of wildfire can be particularly challenging, as 
the effects of wildfires interact with nonlinear mechanisms operating at multiple scales (Hutchins et al., 2020).

The Yukon-Kuskokwim (YK) Delta is an ideal ecosystem to study the hierarchical mechanisms driving carbon 
cycling in permafrost landscapes. The YK Delta, the largest wetland on the west coast of North America 
(∼1 × 10 5 km 2), is subarctic tundra underlain by discontinuous permafrost, but near surface permafrost temper-
atures are near the point of thaw (∼1 m depth; S.M. Natali, unpublished data). YK Delta is subject to frequent 
wildfires, but more area burned in the YK Delta in 2015 than in the previous five decades combined (BLM-AICC 
Alaska Wildland Fire Maps). Atmospheric inverse models of the circumpolar Arctic and high latitudes using 
airborne CO2 and CH4 data have shown the YK Delta to be a regional hotspot of CO2 and CH4 emissions (Chang 
et al., 2014; Chen et al., 2015; Commane et al., 2017; Miller et al., 2016), but there have been few on the ground 
measurements of fluxes to properly identify and attribute the specific ecosystems and mechanisms contributing 
to these fluxes (Bartlett et al., 1992; Fan et al., 1992).

In order to evaluate the relationship between wildfires and inland aquatic carbon in the YK Delta, we require an 
approach that can accommodate the complex effects of fire and the potentially hierarchical and nonlinear func-
tional relationships. In this study, we used boosted regression tree models to investigate environmental variables 
influencing dissolved CO2 and CH4 in surface waters from wetlands and small waterbodies in the YK Delta in 
Alaska. We evaluated the effect of fire on drivers of CO2 and CH4 in waterbodies by training separate boosted 
regression tree models for burned and unburned watersheds. We used the relative influence of a suite of drivers 
to rank which variable can best explain the variability in CO2 and CH4, including environmental variables (e.g., 
dissolved oxygen, temperature, pH), waterbody size and shape, watershed landscape characteristics (e.g., average 
slope, percent cover burned area), and waterbody chemistry (e.g., dissolved organic carbon (DOC) concentration 
and composition, NH4 +, NO3 −, PO4 3−). We described the relationship between the most important drivers and 
dissolved CO2 and CH4 to (a) examine implications for process-based models and scaling waterbody CO2 and 
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CH4, and (b) examine how the processes controlling CO2 and CH4 relationships between landscapes and aquatic 
ecosystems may be altered under a warming climate (e.g., increased wildfire).

2. Materials and Methods
2.1. Site Description

This study was conducted in the central-interior of the YK Delta of Alaska, a subarctic tundra region under-
lain by discontinuous permafrost (Figure 1). The study region was located near the Kuka Creek fires of 2015  
(N 61.26°, W 163.25°), about 90 km NW of Bethel, AK, and about 110 km inland from the coast. Average air 
temperatures in Bethel, AK are −0.4°C annually, 12.4°C in summer (June, July and August), −12.2° C in winter 
(December, January, and February), and above freezing from May–October (National Weather Service; Bethel 
area, 1981–2020). Average annual precipitation is 480 mm, with 188 mm falling in summer on average. Thaw 
depths were 30–40 cm in June and July 2016–2017, and 60–70 cm in September 2016. Organic layer horizons 
were deep, ranging from 30–75 cm at the surface. Lakes cover approximately one third of the region and range in 
area from several m 2 to several km 2. Lake depths were typically uniformly shallow (<2 m) and well-mixed. The 
remaining landscape is a patchwork of raised peat plateaus and low-lying wetlands, with elevation varying from 
11–35 m above sea level. Vegetation on the peat plateaus can be characterized as dwarf shrub lichen tundra, with 
various lichen species and Sphagnum fuscum dominant by biomass. Other common plants include Betula nana, 
Empetrum nigrum, Oxycoccus microcarpus, Rhododendron subarcticum, Rubus chamaemorus, Vaccinium uligi-
nosum, Vaccinium viti-idaea, and graminoids including Eriophorum angustifolium, and Eriophorum vaginatum.

2.2. Sample Collection and Processing

2.2.1. Water Sample Collection

Surface water samples (n = 364) were collected across 4 years of field campaigns (2016–2019). Of these surface 
water samples, n = 294 were analyzed for dissolved CH4 and n = 235 for dissolved CO2 from 201 distinct water-
bodies. Several waterbodies were sampled in multiple years and the largest water bodies were sampled in multiple 
locations. Approximately 45% of the waterbodies sampled were lakes, 40% of the waterbodies sampled were fen 
surface waters, and the remainder of the waterbodies sampled were streams, small ponds, and surface waters 
on peat plateaus. While there are some clear differences between lakes, streams, and fens for example, many 
waterbodies exist on a continuum between such designations and these categories do not capture that complex-
ity. Samples were collected between mid-June and mid-July. Surface water samples were immediately filtered 
through pre-combusted GF/F filters (Whatman nominal pore-size ∼0.7 μm), portioned into sample-rinsed 20-ml 
polycarbonate containers, stored in the dark at ∼4°C, and frozen within 48 hr until subsequent analyses.

Figure 1. Yukon Kuskokwim Delta of Alaska (left), study region (inset). Sentinel-2 10 m resolution RGB imagery of the 
study region (right). Surface water sample locations from 2016 to 2019 are depicted as yellow points.
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2.2.2. Dissolved Gas Collection and Analysis

For each sample observation, three dissolved gas measurements were collected simultaneously and processed 
individually, with their average reported as the observation. Dissolved gases were collected by a headspace-equi-
libration method. For each triplicate, 30 ml of bubble-free surface water was slowly drawn into a syringe. Next 
30 ml of ambient air was drawn and the syringe sealed. Each syringe was vigorously shaken for exactly 1 min 
while maintained at the temperature of the waterbody sampled. After equilibration, the headspace was injected 
into evacuated, double septum, vials until slightly over-pressurized. The gas vials were shipped to Woodwell 
Climate Research Center and analyzed for CH4 and CO2 concentrations using a Shimadzu GC-2014 gas chro-
matograph within several weeks of collection. Additional gas vials were injected in the field with ambient air to 
correct for the introduced headspace concentrations. Additional gas vials were injected in the field with standard 
gasses, and the accurate recovery of these concentrations was used to verify the integrity of gas vials during 
transportation. Dissolved gas concentrations were corrected for solubility using the water temperature and air 
pressure at the time of equilibration. Surface water temperature, pressure, dissolved oxygen (% and mg/L), and 
pH were measured using a YSI Pro-Plus multiparameter instrument. The YSI probes were calibrated daily using 
NIST standards (pH 4 and 7). Dissolved CH4 gas samples were analyzed for stable carbon isotopic composition 
at Northumbria University using a Delta V Plus IRMS interfaced to a Trace Gas Pre-Concentrator and Gas Bench 
(Thermo Scientific). Dissolved CH4 isotopic signatures were corrected for atmospheric mixing during headspace 
equilibration assuming global mean surface atmospheric 𝐴𝐴 𝐴𝐴  13C-CH4 of −47.2‰ (Warwick et al., 2016).

2.2.3. Water Sample Chemistry

Surface water samples were analyzed for DOC and total dissolved nitrogen concentrations using a Shimadzu 
TOC-VCPH at the Woodwell Climate Research Center. Nutrient concentrations, including phosphate, nitrate, 
and ammonium, were analyzed colorimetrically on an Astoria-Pacific autoanalyzer at the Woodwell Climate 
Research Center. Nitrate concentrations were often below levels of detection, and henceforth we report dissolved 
inorganic nitrogen as the sum of ammonium and nitrate concentrations. Chromophoric dissolved organic matter 
(DOM) was measured on surface water samples using a Shimadzu UV-Vis spectrophotometer measuring absorb-
ance across 200–800 nm wavelengths at 1 nm resolution. Specific UV absorbance at 254 nm (SUVA) and the 
DOM slope ratio (SR) were then calculated as in Helms et al. (2008) as indicators of carbon composition and 
lability. The slope ratio of DOM is inversely related to the average molecular weight of DOM; a higher slope 
ratio indicates lower bulk molecular weight, which is commonly a more labile carbon source for decomposition 
(Helms et al., 2008). SUVA is directly related to average DOM aromaticity, which usually corresponds to higher 
contributions of biologically unreactive carbon sources (Helms et al., 2008).

2.3. Geospatial Waterbody and Watershed Analyses

We used remote sensing to quantify watershed characteristics that might be related to unmeasured landscape 
variables (e.g., watershed thaw depth), hydrologic variables (e.g., water residence time) and unmeasured reac-
tants (e.g., black carbon, organic-phosphorus). Map figures were created using Generic Mapping Tools (Wessel 
et al., 2019).

2.3.1. Watershed Imagery Processing

To evaluate the role of watershed inputs and landscape connectivity on dissolved CO2 and CH4 concentrations, 
we delineated watersheds for each sampling location using the SAGA “Upslope area” algorithm in QGIS with 
a 2-m resolution digital elevation model (Porter et al., 2018). Level-2A Sentinel-2, 10-m resolution, multispec-
tral surface reflectance imagery was used to provide information on vegetation, landcover, and surface water. 
The surface reflectance imagery was a composite of cloud-free imagery from 2017 to 2019 within 2 weeks of 
most sample collection dates (early July). The surface reflectance imagery was used to calculate the Normalized 
Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI), metrics of canopy or soil 
moisture and vegetation productivity. We calculated slope and elevation from the digital elevation model. We 
then determined the average of each derived index by sample watershed to include as potential drivers in mode-
ling dissolved CO2 and CH4. The composite imagery and derived indices were made using Google Earth Engine.
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2.3.2. Landcover Mapping

We created a 10-m resolution landcover map for the region of interest to 
determine the presence and abundance of various terrestrial, wetland, 
surface waterbodies, and disturbed areas in sample watersheds (Figure S1 
in Supporting Information S1). We used an unsupervised k-means algorithm 
(Google Earth Engine, “wekaKMeans”) with the surface reflectance raw 
bands, derived bands (NDWI, NDVI), slope, and elevation as inputs for the 
classification. The Alaska Interagency Coordination Center historical wild-
fire database was used for wildfire delineations. Wildfires in the region of 
interest included fire scars from the 1970s, 1990s, and early 2000s, collec-
tively designated as “old fires,” and fire scars from the large area burned in 
2015. First, the region of interest was divided into unburned, old fire scars, 
and 2015 fire scars, and the classification algorithm was run separately for 
each. We used an initial number of classes “k” higher than the number of 
known landcover types in order to capture the variability in the driving layers, 

then later grouped similar classes produced by the k-means algorithm. For example, the unburned classification 
identified three classes grouped as terrestrial peat plateau tundra and two wetland classes merged as peatland 
fens. The final landcover classes for unburned areas include terrestrial peat plateau, peat plateau edges, degraded 
peat plateau (i.e., from permafrost thaw), fens, and surface water. The final landcover classes for old fire scars 
and 2015 fire scars include peat plateau, degraded peat plateau, fens, and surface water. We calculated the total 
area and percent area of each landcover type and burned area by sample watershed to include as potential drivers 
in modeling dissolved CO2 and CH4. Landcover accuracy was assessed using 350 randomly stratified points 
from the region of interest. The classifications at these points were compared to higher resolution (Worldview-2) 
imagery using Google Earth Engine and reclassified using expert assessment. We used a confusion matrix to 
assess the balanced accuracy of each classification, which ranged from 0.75 to 0.99 (Figure S2 in Supporting 
Information S1) (Clewley et al., 2015).

2.3.3. Waterbody Shape

To determine the effects of waterbody shape on dissolved CO2 and CH4, we calculated the area and perimeter 
of every surface waterbody in the region of interest using object-based image analysis in Google Earth Engine. 
Each sample location with a large enough waterbody to be detected was then assigned the corresponding area, 
perimeter, and area:perimeter ratio. The waterbody shape data were mostly only available for sample locations 
classified as lakes, as the amount of surface water in fens, streams, and plateau ponds was often too small to detect 
at 10 m resolution.

2.4. Statistical Analysis

We used boosted regression tree models to predict dissolved CO2 and CH4 and explore the effect of fire on the 
relationships between potential drivers and CO2 and CH4. Boosted regression tree (also called gradient boost-
ing) is a form of machine learning developed from the decision tree family of models combined with a boost-
ing algorithm. Recent studies have used machine learning approaches to create statistical models with greater 
accuracy in predicting ocean surface dissolved CO2 and DOC in inland waterbodies (Chen et al., 2019; Toming 
et al., 2020). These models have higher accuracy because they allow for complex interactions and non-linear rela-
tionships, which often better capture the mechanisms involved. All boosted regression tree models were fit using 
the “gbm” function in the gbm package in R v.3.6.1, and model results were investigated using the “ice” function 
in the ICEbox package in R v.3.6.1. Model fit was investigate by linear regression (“lm” function in R) between 
observed dissolved gas concentrations and the predicted dissolved gas concentrations from the boosted regression 
tree model results. Both dissolved CO2 and CH4 concentrations were log-transformed to achieve normality which 
was assessed using QQ-norm plots (“qqnorm” function in R).

2.4.1. Driver Selection and Model Structure

In order to capture potentially disparate effects of fire on the drivers of dissolved CO2 and CH4, we split the data 
set into observations with mostly unburned watersheds (<10% burn area) and burned watersheds (>10% burn 
area) and modeled them separately (Table 1). The majority of watersheds affected by fire were only partially 

Model
Number of 
variables

Number of 
observations R 2

Variance 
predicted 

(%)

RMSE 
(log 
μM)

CO2 Unburned 13 93 0.94 79% 0.55

CO2 Burned 15 142 0.87 61% 0.73

CH4 Unburned 17 121 0.88 52% 0.28

CH4 Burned 18 166 0.79 36% 0.47

Note. Coefficient of determination (R 2) from a linear regression of modeled 
and observed log concentrations. Variance explained (%) and root mean 
square error (RMSE) from predictive deviance of 10-fold cross validations.

Table 1 
Boosted Regression Tree Model Fit and Predictive Ability
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burned and few watersheds were completely within the 2015 Kuka Creek 
fire scar. Varying the cutoff from >0% watershed area burned through 33% 
area burned had little effect on model fitting or results. Dissolved CO2 and 
CH4 were log transformed to achieve normality. Several possible variables 
were excluded from the model due to strong correlations (Pearson correlation 
>0.7) with other drivers. While boosted regression tree models can accom-
modate correlated predictor variables, interpretations of variable importance 
are difficult in such circumstances. For example, watershed average NDWI 
and NDVI correlate strongly, so we chose to retain NDWI as it can also serve 
as a proxy for soil moisture which has direct consequences for CO2 and CH4 
production. Dissolved organic nitrogen concentration was excluded due to 
the high correlation with DOC concentration. The classified percent area 
of landcover types in the watersheds necessarily sum to one and are there-
fore often highly correlated. We included only the landcover types that are 
expected to be more ecologically important.

2.4.2. Model Training

Boosted regression tree model training was performed using the “gbm.step” 
function from the dismo package in R v.3.6.1 following the procedure in Elith 
et  al.  (2008). We used a learning rate and bag fraction of 0.005 and 0.65 
respectively, which are within the optimum ranges. Changes in the learn-
ing rate and bag fraction had little effect on model performance. We used a 
tree complexity of 2, allowing for two-way interactions between predictors. 
Small sample sizes for boosted regression tree models, such as the data set 
in this study, are generally best modeled with tree complexity two or three 

and ≥1,000 trees. We saw no substantial difference in the model when increasing tree complexity to 3. We used 
10-fold cross-validation to tune the number of trees and drop variables to avoid over-fitting. We used deviance as 
a loss function, a goodness-of-fit metric (D) related to the difference in log-likelihoods of the fitted model (Lm) 

and a perfect model (Ls) according to � = −2
(

log
(

��
��

)

)

. . We computed the predictive ability of each model 

as the percent improvement of predictive deviance using 10-fold cross-validation over the null model, which can 
be interpreted as the percent variance explained when predicting to new data. Model goodness-of-fit was evalu-
ated as the R 2 of a linear regression between observed and fitted CH4 or CO2 concentrations. To estimate model 
stability, each boosted regression tree model was run 10 times with different random seeds using a different 
subset of observations to train each model.

2.4.3. Model Interpretation

An advantage of boosted regression tree models compared to other machine learning algorithms is the interpreta-
bility of the model results. The relative importance of each predictor variable can be calculated from the number 
of times it is selected for splitting in a decision tree, weighted by the improvement of the model caused by its 
inclusion, and then averaged over all trees in the final model. Variable relative importance is scaled to sum to 
100. Individual conditional expectation plots and partial dependence plots are useful for visualizing heterogeneity 
in responses, interactions between predictors, and the average response to a predictor. Each line of an individual 
conditional expectation plot is calculated by varying the predictor of interest across the range of values in the 
training data set, while holding all other variables constant for that observation (Goldstein et al., 2015). Partial 
dependence plots are the average predicted response across observations of individual conditional expectation 
plots. We smoothed individual expectation and partial dependence plots using the loess method and set the x-axis 
limits to truncate the 10th and 90th percentile of observations to avoid over-interpretation (Goldstein et al., 2015). 
All partial dependence and individual conditional expectation plots are centered on 0 μM predicted CH4 or CO2.

3. Results and Discussion
Waterbody dissolved CO2 and CH4 concentrations in the YK Delta were similar on average to those found in 
other studies of lakes in Alaska and the Northwest Territories of Canada, although we observed a wider range and 
greater variability for both CO2 and CH4 (Figure 2; Cunada et al., 2018; Stackpoole et al., 2017; Townsend-Small 

Figure 2. Observed dissolved gas concentrations for CO2 (a) and CH4 (b) 
by waterbody type and separated into unburned (blue) and burned (orange) 
watersheds. The lower and upper hinges correspond to the first and third 
quartiles, the whiskers extend to 1.5 times the interquartile range, with outliers 
indicated as points.
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et al., 2017). Both the differences in CO2 and CH4 concentrations between waterbody types and the variability 
within waterbodies tended to be greater than the effects of fire on CO2 and CH4 concentrations (Figure 2). The 
effects of fire were inconsistent across waterbody types: for some fen surface waters, burned watersheds had 
higher CH4 concentrations, but for lakes in burned watersheds, CH4 concentrations were lower than in unburned 
watersheds. The boosted regression tree models predicted 79% and 52% of the observed variability in dissolved 
CO2 and CH4, respectively in waterbodies from unburned watersheds, and predicted 61% and 36% of dissolved 
CO2 and CH4 in waterbodies from recently burned watersheds (Table 1).

3.1. Model Performance

The boosted regression tree models developed for burned and unburned watersheds were able to accurately model 
and predict dissolved CO2 and CH4 in waterbodies. Model fit was better for CO2 than CH4 and better for unburned 
than burned watersheds. The final number of variables retained in each model ranged from 13 to 18 (Table 1). 
The goodness-of-fits for all models were excellent, with R 2 ranging from 0.79 to 0.94 (Table 1). Because the 
observations were log-transformed and the slopes of fit were all less than one (0.63–0.89), predicted values are 
conservative and in particular underestimated high concentrations of dissolved CO2 and CH4 (Figure 3). Model 
predictive ability (percent deviance explained) was better for aquatic systems within unburned than burned water-
sheds (Table 1). This disparity in performance could reflect processes that are important for regulating waterbody 
dissolved CO2 and CH4 in burned watersheds that were not measured in this study, such as increased thaw depths. 
Alternatively, a larger sample size might be needed for increased predictive performance for burned watersheds 
due to the range in contributing watershed area burned or heterogeneity in fire severity.

3.2. Drivers of Dissolved CO2 and CH4 in Waterbodies

3.2.1. Effects of Waterbody Shape

Waterbody size and complexity of waterbody shape were the largest drivers of dissolved CO2 and contributed 
45% and 25% relative influence in unburned and burned watershed models respectively (Figure 4a). Waterbody 
shape variables contributed to explaining a small but significant portion (4%–5%) of CH4 models (Figure 4b). 
We observed that smaller waterbodies had higher predicted dissolved CO2 and CH4 (Figures 4, 5b and 5d), which 
is consistent with the global pattern (Holgerson & Raymond, 2016). Higher dissolved CH4 and CO2 in small 
lakes have been attributed to high edge or sediment to water volume ratios and more frequent mixing of the 
water column (Bastviken et al., 2008). Predicted dissolved CH4 and CO2 increased as the area: perimeter ratio 

Figure 3. Modeled and observed dissolved gas concentrations for CH4 (a and c) and CO2 (b and d), unburned (blue) and 
burned (orange). Model goodness-of-fit shown using log-transformed data (a and b) and un-transformed data (c and d). 
One-to-one lines are the dashed lines, and linear regressions of fit are solid blue for unburned and orange for burned.
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decreased, supporting the role of edge effects (Figures 5a and 5c; Figure 4). Compared to the unburned model, 
the relative importance of waterbody area increased in the burned CO2 model, whereas the relative importance of 
the area:perimeter ratio decreased. This would indicate that waterbodies in burned watersheds were less sensitive 
to near-shore edge effects than waterbodies in unburned watersheds, possibly due to changes in thaw depths, 
hydrology, or vegetation after fire in terrestrial-aquatic transitions at waterbody edges.

Terrestrial-aquatic transition zones, which are relatively more influential in smaller water bodies, have long 
been recognized as biogeochemical hot spots, where flowpaths converge to potentially supply substrates and 
conditions that promote disproportionately high reaction rates (Lin et  al., 2012; McClain et  al., 2003; Zhang 
et al., 2020). There are numerous mechanisms by which waterbody edges could support greater dissolved CO2. 
For example, complex lake shorelines are exposed to more latent heat than smooth shorelines, and could experi-
ence greater slumping and soil organic matter inputs from permafrost thaw. Alternatively, riparian and emergent 
vegetation at waterbody edges could influence the composition of soil porewater or hyporheic flowpaths. Our 
results are encouraging for applications scaling waterbody CO2 concentrations, because, although more research 
is needed to clarify the role of waterbody edge effects in regulating CO2 concentrations, waterbody size and shape 
are easy to measure with remote sensing and use as spatially-resolved drivers.

3.2.2. Effects of Carbon Composition and Quantity

The top three drivers of waterbody dissolved CH4 in unburned watersheds were all related to carbon composition 
and together comprised 59% of the relative influence on dissolved CH4, while the remaining variables contrib-
uted ∼5% or less each (Figure 4b). The highest relative influence predictor was DOM slope ratio, an indicator 
of carbon lability, at 32% (Figure  4b). DOC concentration was the next strongest predictor variable at 15% 

Figure 4. Relative influence of variables in unburned (blue) and burned (orange) watersheds in boosted regression tree 
models predicting CO2 (a) and CH4 (b) concentrations in waterbodies in the YK Delta of Alaska. The symbol labels indicate 
the overall effect of each predictor on CO2 or CH4, whether positive (+), negative (−), or both (±). Error bars indicate 
standard deviation of relative influence from 10 boosted regression tree models run with different random seeds. Relative 
influences were scaled to 100%, with low influence predictors not depicted (a: waterbody area, waterbody area:perimeter, 
watershed area, waterbody pH, watershed NDWI, waterbody conductivity, b: waterbody pH, SUVA, phosphate concentration, 
conductivity). The full listing of variable relative influences can be found in Table S1 in Supporting Information S1.
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relative influence, followed by the SUVA of DOM, an indicator of carbon aromaticity, at 12% relative influence 
(Figure 4b).

The effects of DOC concentration and composition on waterbody dissolved CH4 were generally positive, indicat-
ing that labile carbon sources might be limiting methanogenesis in unburned waterbodies (Figure 6c). Moreover, 
there was a strong interaction between DOC concentration and composition. When carbon composition was 
more unreactive (as derived from low slope ratio and high SUVA values), there was no effect of DOC on CH4 at 
low concentrations, and a slight positive effect on CH4 at high DOC concentrations (Figures 6a and 6b). When 
carbon composition was labile (as indicated by high slope ratio and low SUVA values) and carbon concentrations 
were low, there was a negative effect of DOC on CH4, likely demonstrating the inability of the energetically 
unfavorable metabolism of methanogens to compete for carbon (Figures 6a and 6b). When carbon compositions 
were labile and carbon concentrations were high (>10 mg/L), CH4 concentrations increased rapidly with DOC 
concentration until plateauing at DOC concentrations of ∼20 mg/L, where carbon may no longer be limiting 
(Figures 6a and 6b). Our findings are consistent with radiocarbon tracing studies in boreal fen peatlands that 
found dissolved CH4 was mostly derived from labile DOM (Chanton et al., 2008), and with a study of lakes in the 
Mackenzie River Delta where dissolved CH4 concentrations were also correlated with DOM slope ratio (Cunada 
et al., 2018). Our results indicate that in unburned waterbodies in the YK Delta, CH4 concentrations were primar-
ily controlled by carbon limitation (i.e., CH4 concentrations were highest when there was abundant labile carbon).

DOM quality and availability were the dominant drivers in methane production in unburned watersheds, but 
clearly influenced respiration and methanogenesis in all waterbodies. While the effects of DOC and carbon 
composition were similar for dissolved CH4 in burned watersheds (Figure 6d), the relative influence of carbon-re-
lated drivers was lower at 29% (Figure 4b). We would expect respiration from decomposition more generally, not 
just methanogenesis, to be driven by carbon substrate availability as well. While dissolved CO2 in burned and 
unburned watersheds followed a similar pattern to that of CH4 (i.e., increasing carbon availability and lability 
increased CO2; Figures 6e and 6f), the strengths of carbon-related drivers were lower, totaling 19% and 10% 
relative influence respectively (Figure 4a).

Figure 5. Partial dependence plots of the average effects of waterbody area/perimeter ratio (a and c) and waterbody area 
(b and d) on predicted carbon dioxide in unburned (blue) and burned (orange) watersheds. Shading indicates the standard 
deviation of the partial dependence functions from 10 boosted regression tree models run with different random seeds.
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3.2.3. Environmental Controls: Dissolved Oxygen, Temperature, and pH

Dissolved oxygen was one of the top drivers of waterbody dissolved CO2 in both burned and unburned with 21% 
and 23% relative influence respectively (Figure 4a). As dissolved oxygen increased, waterbody dissolved CO2 
decreased, as expected for increased photosynthetic activity, decreased respiration, or greater exchange of CO2 
with the atmosphere (Figures 7c and 7d). Warmer water temperatures and higher pH also were associated with 
lower CO2 concentrations, which is consistent both with primary productivity and respiration regulating CO2 
concentrations (Figure  4, Figure S5g in Supporting Information  S1). Chlorophyll-a concentrations and other 
gross primary productivity measurements have often been used as a proxy for dissolved CO2 in marine envi-
ronments and large lakes (Chen et al., 2019; Landschützer et al., 2013). Even though the small lakes and other 
waterbodies in this study were all relatively high in DOC and likely net heterotrophic, our results indicate that 
primary productivity was important in regulating waterbody CO2 concentrations.

Dissolved oxygen and pH had a negative effect on dissolved CH4 in both burned and unburned watersheds 
(Figures 4, 7a and 7b, S3l in Supporting Information S1), which is consistent with low oxygen and pH being 
indicative of redox conditions suitable for methanogenesis and restrictive to methanotrophy (Megonigal 
et al., 2004; Segers, 1998). Temperature had an overall positive effect on predicted CH4 concentrations in water-

Figure 6. Effects of dissolved organic matter (DOM) quantity and composition on CH4 and CO2 concentrations in the 
Yukon-Kuskokwim Delta of Alaska. Top: individual conditional expectation plots of the effects of dissolved organic carbon 
concentrations (DOC) on predicted dissolved CH4 in unburned watersheds. Line color corresponds to dissolved organic 
matter Specific UV absorbance (SUVA) (a) and slope ratio (b). Partial dependence plots of the average effects of DOC on 
predicted CH4 in unburned (c) and burned (d) watersheds, and on predicted CO2 in unburned (e) and burned (f) watersheds.
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bodies in burned and unburned watersheds, which is a typical metabolic response (Figure 4). In addition to the 
direct effects on metabolic rates, these environmental conditions can affect changes in microbial and methano-
gen community structure and methanogenesis pathways (Chowdhury et al., 2015; Jerman et al., 2009; Turetsky 
et al., 2008). Empirical relationships among dissolved oxygen and temperature are often used in models to scale 
up CO2 and CH4 emissions (Bridgham et al., 2013; Jiang et al., 2017; Lloyd & Taylor, 1994; Luus & Lin, 2015; 
Payn et  al.,  2014; Rinne et  al.,  2018; Ueyama et  al.,  2020; Yvon-Durocher et  al.,  2014; Zheng et  al.,  2018). 
However, temperature and dissolved oxygen only contributed 6% and 14% relative influence in the unburned 
and burned CH4 model (Figure 4b), indicating that typical scaling strategies for aquatic CH4 emissions could fall 
short for the YK Delta.

3.2.4. Effects of Nutrient Availability

Dissolved inorganic nitrogen had a small relative influence in both CH4 and CO2 unburned models, but 8-times 
greater influence in both burned models, while phosphate had a small but significant contribution to all models 
(Figure 4). The effects of dissolved inorganic nitrogen on dissolved CH4 and CO2 in burned watersheds were 
similar to each other. There was an initial negative relationship spanning the low range of concentrations 
(0–40 μg-N L −1; Figures 8b and 8d). For nitrogen concentrations greater than median value in unburned water-
sheds (∼40 μg-N L −1; Figures 8a and 8c), the relationship reversed and both dissolved CH4 and CO2 increased 
with nitrogen availability until plateauing for nitrogen concentrations higher than 100  μg-N  L −1 (Figures  8b 
and 8d). Increased nitrogen leaching following wildfires has been observed in other arctic ecosystems, with more 
severe fires causing greater mobilization of nitrogen to downstream ecosystems (Abbott et al., 2021; Ludwig 
et al., 2018). The contrasting effects of nitrogen on dissolved CH4 and CO2 we observed could depend on the 
extent and severity of fire in a watershed; the high-N positive effect occurring when there was a large proportion 
of high severity burns in the watershed, and the low-N negative relationship when low severity burns were more 
abundant in the watershed.

Figure 7. Partial dependence plots of the average effects of dissolved oxygen on predicted CO2 (c and d) and CH4 (a and b)  
in unburned (blue) and burned (orange) watersheds. Shading indicates the standard deviation of the partial dependence 
functions from 10 boosted regression tree models run with different random seeds.
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A shift in the microbial community in burned watersheds could explain the observed changes in the effects of 
nitrogen. Both methanogenic and methanotrophic activity have been shown to increase in response to nutrient 
fertilization, with both positive, negative, and neutral net effects on CH4 emissions (Aerts & Toet, 1997; Juutinen 
et al., 2018; Keller et al., 2005; Lund et al., 2009; Torn & Chapin, 1993; Veraart et al., 2015). This mechanism is 
supported by the increase in the relative influence of δ 13C-CH4 from 6% in unburned watersheds to 14% in burned 
watersheds (Figure 4b). For both burned and unburned, CH4 concentrations declined as the influence of meth-
anotrophy increased, though the correlation in burned observations was stronger (Figure 4). The increased impor-
tance of δ 13C-CH4 in burned waterbodies could indicate greater control of the microbial community through the 
balance of methanogenesis and methanotrophy.

3.2.5. Watershed Drivers

Upstream watersheds can directly influence CH4 and CO2 concentrations if hydrologic inputs (i.e., upstream 
waterbodies, sub- and supra-permafrost groundwater) have different concentrations than the water column 
(Dabrowski et al., 2020) and can indirectly influence CH4 and CO2 production in the water column by chang-
ing environmental constraints or supplying limiting reactants (McClain et al., 2003). Remotely-sensed water-
shed drivers (i.e., watershed slope, watershed size, percent area of degraded peat plateau) contributed a 
large portion of the explained variance in burned models for dissolved CH4 and CO2 (total 17% and 27% 
respectively) but contributed less to the unburned models for dissolved CH4 and CO2 (total 10% and 5% 
respectively; Figure 4). Percent area of surface water and watershed size had a positive effect on waterbody 
CH4 and CO2 concentrations in burned watersheds but a negative effect on downstream waterbody CH4 and 
CO2 concentrations in unburned watersheds (Figure 4). Upstream networks of waterbodies were thus more 
likely to be a source of dissolved CO2 and CH4 in burned watersheds, but dilute CH4 and CO2 concentra-
tions in unburned watersheds. Percent area of peat plateau edges had a positive effect on CH4 in unburned 
watershed (Figure 4) and degraded peat plateau had positive effects on dissolved CH4 in burned watersheds 
(Figure 9a). Degraded peat plateau had a similar effect on dissolved CO2 (Figure 9b), but edge plateau area 
was not retained as a driver in the CO2 models. These ecosystem margins and disturbed areas could be hot 
spots of CH4 and to a lesser extent CO2 production, leading to greater soil pore and ground water inputs from 

Figure 8. Partial dependence plots of the average effects of dissolved inorganic nitrogen on predicted CH4 (a and b) and 
CO2 concentrations (c and d) in unburned watersheds (blue) and burned watersheds (orange). Shading indicates the standard 
deviation of the partial dependence functions from 10 boosted regression tree models run with different random seeds.
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the watershed. The average watershed slope had a negative effect on waterbody CH4 and CO2 concentrations, 
but was only a significant driver in burned watershed models and was not retained as a driver in unburned 
models (Figures 9c and 9d). Flatter watersheds could have longer water residence times, leading to increased 
leaching of DOM, more anoxia in pore water, and more reaction time for decomposition and respiration 
(Harms & Jones, 2012; Harms & Ludwig, 2016; Johnston et al., 2020; Judd & Kling, 2002; Koch et al., 2013; 
Newman et al., 2015; Olefeldt & Roulet, 2012; Throckmorton et al., 2015; Zarnetske et al., 2011). Our results 
demonstrate a shift away from waterbody edge effects and towards greater landscape connectivity and water-
shed level influences driving CO2 and CH4 concentrations in burned watersheds.

The percent area of a watershed that actually burned was a relevant driver in both CH4 and CO2 burned models. 
There was a threshold effect; percent watershed area burned did not affect CH4 and CO2 concentrations until 
greater than 65% of the watershed area was burned (Figures S4n and S6o in Supporting Information S1). This 
could suggest that more thoroughly burned watersheds affect dissolved CH4 and CO2 through variables we did 
not measure in this study. Watershed average NDWI, a metric associated with canopy wetness and soil moisture, 
was negatively correlated with percent burned area (Pearson correlation = −0.68), indicating wetter conditions 
in partially burned watersheds than in complete burns. This could be driven by the absence of moss and other 
vegetation biomass in burned areas or an increased presence of higher severity burns with drier conditions. 
NDWI was a more important driver in burned than unburned models and had a bimodal effect on waterbody CH4 
and CO2 concentrations; the highest concentrations occurred in the wettest conditions when NDWI was high and 
when NDWI values were lower than any of those found in unburned areas, which could be indicative of high 
severity burns (Figures S4k and S6e in Supporting Information S1). Our results demonstrate that the pattern of 
a fire, that is, whether watersheds were partially burned or completely burned can regulate the effects of fire on 
downstream waterbody chemistry, reinforcing the need for a landscape approach to predicting waterbody CH4 
and CO2 concentrations.

Figure 9. Partial dependence plots of the average effects of the percent of watershed area that is degraded permafrost (a and b) and watershed slope (c and d) on 
predicted CO2 (b and d) and CH4 (a and c) concentrations in burned watersheds. Shading indicates the standard deviation of the partial dependence functions from 
10 boosted regression tree models run with different random seeds. Neither “watershed % degraded area” or “watershed average slope” were retained as variables in 
models for unburned watersheds.
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3.3. Consequences of Fire for Waterbody CO2 and CH4 Concentrations and Scaling

Averaging across all waterbodies, there was no detectable difference between CH4 and CO2 concentrations in 
burned watersheds. However, the mechanisms driving dissolved CH4 and CO2 changed as a consequence of 
fire. Fire reduced the influence of DOM on dissolved CH4 but increased the influence of DOM on dissolved 
CO2, with potentially balanced impacts on carbon emissions from waterbodies. The spatial extent of watershed 
burned area directly influenced dissolved CH4 and CO2, and while we did not directly account for fire severity, 
it may have indirectly affected dissolved CH4 and CO2 through inorganic nitrogen availability and watershed soil 
and canopy moisture (NDWI). Fire increased the sensitivity of CH4 and CO2 concentrations in waterbodies to 
watershed landscape drivers (i.e., watershed slope, size, NDWI, percent area degraded permafrost) compared 
to near-shore effects (i.e., perimeter:area ratio) and internal waterbody mechanisms (i.e., DOM composition). 
Fire can affect hydrologic regimes in a number of ways, such as increasing thaw depths, deepening flowpaths, 
increasing the hydrophobicity of soils, increasing small wetland and pond formation through subsidence, or alter-
ing the water balance as a result of changes in evapotranspiration from recovering vegetation (Brown et al., 2015; 
Helbig et al., 2016; Michaelides et al., 2019; Petrone et al., 2007). While we do not have direct measurements 
of these mechanisms, these results suggest that waterbody CH4 and CO2 concentrations were more sensitive to 
watershed dynamics in burned watersheds. An integrated terrestrial-aquatic approach in fire-affected, wetland-
dense, ecosystems could improve scaling of CH4 and CO2 emissions and reduce uncertainty in bottom-up esti-
mates of the inland aquatic carbon budget.

4. Conclusions
The boosted regression tree models were able to depict well-documented ecological dynamics, such as temper-
ature sensitivity and carbon limitation of microbial respiration and methanogenesis. The models were consistent 
with globally-observed patterns, such as the relationship between lake size and dissolved CH4 and CO2, and were 
able to capture non-linear and interactive effects of predictor variables. Given that small waterbodies had the 
largest concentrations of CH4 and CO2, accurately accounting for carbon emissions from these small but abundant 
sources could greatly reduce the uncertainty in inland aquatic carbon budgets. For example, dissolved CO2 was 
largely driven by waterbody size and shape and was saturated with respect to the atmosphere, suggesting that 
these waterbodies could be a net source of CO2 emissions, even during the peak growing season. However, these 
inland water bodies are largely attributed a flux of zero in top-down carbon budgets from atmospheric inversion 
models for example, Commane et al., 2017. More seasonal observations of inland aquatic CH4 and CO2 concen-
trations are needed to extend predictive models outside of the peak growing season.

Contrary to many empirical studies and process-based models, our results suggest that dissolved CH4 concentra-
tions were predominantly predicted by carbon availability and quality, as opposed to temperature and dissolved 
oxygen. However, our sampling regime was not designed to test temperature or oxygen dependence. Remote sens-
ing of chromophoric DOM has been used to predict DOC concentrations in inland waters (Brezonik et al., 2015; 
Griffin et al., 2018; Kutser et al., 2005), and, though associated with greater uncertainty in complex inland waters 
with high carbon concentrations, this could be a fruitful avenue for mapping carbon availability and scaling CH4 
emissions in waterbodies in the YK Delta.

Our results suggest wildfires alter lake and wetland ecosystems in the YK Delta to be more sensitive to watershed 
landscape drivers. After fires, areas of degraded permafrost increased CH4 and CO2 concentrations in down-
stream waterbodies, contributing to a positive feedback to climate as the Arctic continues to warm and permafrost 
thaws. As wildfires increase in frequency and severity with climate change, it will become more important to use 
an integrated terrestrial-aquatic approach when scaling inland aquatic carbon fluxes.

Data Availability Statement
The surface water chemistry and environmental data used in the boosted regression tree models in this study 
are available at the Arctic Data Center repository via http://doi.org/10.18739/A22804Z8M and http://doi.
org/10.18739/A23775V7T.
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